rchest

Orchestra User Guide

This document contains an installation and user guide for Orchestra4.9.0-M2

Orchestra Team
- September 2011 -

Copyright © 2010 Bull SAS - OW2 Consortium

Table of Contents

F gL oo 1 1o o PSP Y
1. General INFOMMEIIONceeitieee ettt e ettt e et e e e e et eeeaba s 1
1.1, OrChESIIa OVEIVIEBWceeeeieeeii ettt ettt e et e et eeeaa s 1

D = (1= K PP 1

L.3. RESIICIIONS ..ttt ettt e et e ettt e et e e e e e aee 1

o N S = o S PP PPT 2

2. PrEFBOUISITES ...oee ittt ettt 3
2.1 HBIMOWEIE ...ttt ettt ettt e e e e e e e ae 3

2.2, SOFIWEAIE ..ttt et et e e ean e ee 3

3 INSEAIELHON QUITE ...ttt 4
3.1 WeED Service FrameWOIKScouuuiiiiiiie e 4
311 APACNE AXIS ..t 4

312, APACNE CXF et 4

3.2. Orchestra Tomcat distribDULIONoooiiiiiiii e 4
2.1 INSATBIION ...ttt et 4

3.2.2. Database MaNAQEMENLccuuuieiiiiie ettt et e et e e e s 6

3.2.3. Orchestra direCtory SITUCTUIEccuuueiiiiie et 6

3.3. Orchestra OSGI Felix distribDUtioncooouiiiiiiii e 7
331 INSLATBIION .ttt 7

3.3.2. Database MaNaQEMENLcc.uuieiiiiie ettt ettt e et eeeaa s 7

3.3.3. Orchestra direCtory SITUCTUIEcouuuieiiiii e 8

3.4. SOA console stand-alone iNSEAllatioNuieieiiiieiiii e 9

4. CoNnfiguration AN SENVICESuuuiiiiiii ettt e et ettt e e e e e 10
4.1, SIMPlE CONFIQUIALTONvuieiiiie et 10

4.2, CONFIQUITNG TOGOEN ..ottt ettt ettt e e e et e e e raa e e enees 10

4.3, SEIVICES CONTAINET ...iettieiiitt ettt ettt e et e e et e e e e et e e e entanaeeees 11
4.3.1. Environment.Xml fileoooeie e 11

A, SEIVICES ..ttt e et et e e e et a et a e 13
QAL PUDIISNES .o 14

A 1 0V o (= PPN 14

A.4.3. REPOSITONY ...eeetiieeeeei ettt ettt e et e et e e e e et e e e eba s 14

A4, PEISISIENCE . .cevtuieeeii ettt ettt e ettt ettt e e e e en e 14

4.4.5. Journal @and HisStOrYuiiiiiiiiiiiii e e e 15

ST @ 0 = 1= PP 15

4.4.7. COMMANG SEIVICE ...ttueieiii ettt ettt e et e et e e et e e e e et e e e eena e eeees 15

4.4.8. Asynchronous Executions (JOBS)ocovvviiieiiiiiniii 16

4.4.9. Finished instance handler (FIH)ooooiiiii e 18

4.4.10. Undeployed process handler (UPH)ccouuiiiiiiiiiiiiiecee e 18

B USEN QUITE ...ttt ettt 20
5.1. Start and SOP OFCNESIIAceveueieieiii ettt e e et e e eaaans 20

5.2. Other COMMANGS ... ittt e et e et e e e 20

5.3. RUNNING the @XaMPIEScooiiii e e 20

5.4. RUNNING The TESISuuiiieii ettt 21

5.5, PrOCESS TESIGNENS ... iiitii ettt ettt e et ettt e s 21

5.6. Deploying / UNdePlOying @ PrOCESScceuruuieeiiiieeetetiia e et e et e e et e e et e e e 21

5.7, ProCess [IfECYCIEu e 22

6. CONSOIE USEN GUITEcieeieeee ettt ettt e et e e et e e e 24
6.1, QUICK SEAIT QUITE ... ceeeeee ettt ettt e et e e e 24

B.2. DEFAUIT USEI'S ...ttt 24

B.3. PrOCESS VIBIW ..ottt ettt e et e e e e e 25
6.3.1. DEPIOY B PIOCESSvteeeetieeeeeti e e e eeti e ettt e ettt e e et et e e e e et e e e eate e e e eeaa e eean 25

Orchestra User Guide

6.3.2. INformation abOULt @ PrOCESSuuiiiiieiiiei e e e e e e e e e e e e e eee 26

6.3.3. ACtions 0N a deployed PrOCESSuuiviiieii e e e e e e e e e e 27

B.4. INSLANCE VIBW ...ttt e et e e et e e e et e e e e et e e e e et e 28
6.4.1. Information about @n INSIANCEvviiiiiii e 28

6.4.2. ACLIONS ON @N INSEBNCEeieeeieee e et e et e et e e et e e e et eeeaenes 29

B.5. ACHVITIES VIBIW ..ottt e et e e e e et e e e e et neeearaaeeeees 30

O o= gl = (1 = PP 30

FA == Lo 0= g U S g U Yo L= 31
45 T @ U o Q= = 1 Ao 0o [31

7.2, DEFAUIT USENS ...ttt e e e e et e e et 31

2 T = T o PSP 31

8. AGVANCEU FEAIUMNESuui i r e et e e e et r e e e et e e e e et e e e eenens 35
8.1. Monitoring and administration With IMXccocoiiiiiiiiiii e 35
8.1.1. Orchestra MBean for thread poolScooevviiiiiiiiiii e 35

8.2. ClUStering CONFIQUIAIONiiiieiii i eiee e e e e e e e e e e e e et e e eaneeeeas 35

8.3. Using Apache Camel With Orchestraccvviiiiiiiii e 36
8.3.1. How to create a Camel context for aproCeSS ?.....ccvvveiinieiiiiiiiieeiiieeeieeeieeeeen, 36

8.3.2. How to use camel context instead of HTTP for Web Service interactions ?........... 36

8.4. Process versioning With OFChESIrauuiiiiiiiiii e e 37
B.4. 1. PrOCESS VEISIONS .. ciiitiieeeeititeeettt e e e e et s e e e et s e e e e et s e e e e et e e e e st e e eeatn e eeeenn s 37

8.4.2. RESIIICLIONS ON VEISIONING 1.vuuiiiieiiiieiiieeiee e e e e e e e e e st e e st esana e e e eeeenns 37

O. DEVEIOPEN'S QUITEiiiieeie et e e e e e e e e e e e e e r e e aaas 39
9.1, OFChESITA APIS ...t e 39
9.1.1. Getting started with Orchestra APIScooviiiiiiiii e, 39

9.2, OrchesStra ClIENE JaI «..vuiiit e e e e e e e et e e et e e e e an e eees 40

9.3. Adding new Orchestra services implementationSooevvviveiiiieiiiieeiie e e e e 40

List of Tables

Introduction

This documentation is targeted to Orchestra users. It presents the installation procedure and a quick user
guide of Orchestra features.

Chapter 1, General information describes the new version Orchestra v4

Chapter 2, Prerequisites describes the prerequisites to the installation of Orchestra

Chapter 3, Installation guide describes how to install the Orchestra engine

Chapter 4, Configuration and Services describes main configuration features and default services

Chapter 5, User guide This chapter will guide you through the discovery of the functionaities of
Orchestra.

Chapter 6, Console User Guide describes how to use the SOA console with Orchestra.
Chapter 8, Advanced features describes advanced features provided by Orchestra.

Chapter 9, Developer's guide guides you through APIs of Orchestra.

Chapter 1. General information

1.1. Orchestra Overview

The new version of Orchestrais based on the “Process Virtual Maching” conceptual model for processes.
The Process Virtual Machine defines a generic process engine enabling support for multiple process
languages (such BPEL, XPDL...).

On top of that, it leads to a pluggable and embeddable design of process engines that gives modelling
freedom to the business analyst. Additionally, it enables the developer to leverage process technology
embedded in a Java application.

For more information about the Process Virtua Machine, check Orchestra FAQ's [http:/
orchestra.ow?2.org/xwiki/bin/view/Main/FAQ] on the Orchestra web site [http://orchestra.ow2.org] .

1.2. Features list

Orchestra is a Web Service Orchestration solution that provides BPEL 2.0 support. Business Process
Execution Language (BPEL) isan XML language created by the Oasis Consortium. More information and
the specifications can be found on Oasis web site [www.0asis-open.org/committees/wsbpel /]

Orchestra provides full support of the BPEL 2.0 standard.

Orchestracomes out with an innovative architecture based on ageneric and extensible engine, called "The
Process Virtual Machine" and a powerful injection technology allowing services pluggability.

This version provides Web Service support using Apache CXF 2.4.1.
Orchestra is shipped with a complete test suite and afew examples.

Orchestrais persistable. This means that all the data concerning your processes definition and instances
execution is stored in a Database using a persistence framework (hibernate by default). The following
database systems have been successfully tested :

¢ H2 Database (default)
» Postgres (8.3)

« MySQL (5.0)

» Oracle (10g)

Orchestra is shipped with a console designed to administrate SOA platforms. This first version only
communicates with Orchestra, but Camel will follow soon.

It isafunctiona console which gives the possibility to administrate your SOA platform monitoring the
different entities from processes to activities. The below Chapter 6, Console User Guide section explains
in details each feature.

1.3. Restrictions

This version has some restrictions on the following aspects :

http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org
http://orchestra.ow2.org
www.oasis-open.org/committees/wsbpel/
www.oasis-open.org/committees/wsbpel/

Genera information

e Somerestrictionsin assign statement :
* no extensionAssignOperation
« validate not supported
e Some restrictions in scope statement
« isolated not supported
* exitOnStandardFault not supported
e Thefollowing BPEL 2.0 statements are not supported :
 validate

e import (only wsdl imports are supported)

1.4. Next steps

This version of Orchestrais aimed at showing the power of its very innovative architecture by providing
support for al the basic activitiesdefined in the BPEL standard. As stated in previous sections, thisversion
provides the possibility to persist the processes definition and execution. The 4.2 rel ease provides support
for the last important BPEL statement named eventHandler. Orchestranow provides full support of BPEL
2.0. The next stage will be to extend Orchestra to provide the first Open Source Business Process Server
to power your SOA infrastructure. Stay tuned ! Check the roadmap [http://wiki.orchestra.objectweb.org/
xwiki/bin/view/Main/Roadmap] for more information.

http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap

Chapter 2. Prerequisites

2.1. Hardware

A 1GHz processor isrecommended, with aminimum of 512 Mb of RAM. Windows users can avoid swap
file adjustments and get improved performance by using 1Gb or more of RAM

2.2. Software

* Orchestra requires Java Development Kit (JDK) 6 but also runs with following releases.

The JDK software can be downloaded from http://www.oracle.com/technetwork/javaljavase/
downloads/index.html

 Orchestrarequires Apache Ant 1.7.1 or higher

It can be downloaded from http://ant.apache.org

Chapter 3. Installation guide

Orchestra comes in two kinds of distribution:

» Tomcat distribution: Orchestra is embedded in a web application deployed in tomcat container. Note
that this distribution embeds in latest versions the SOA console.

» Felix OSGI distribution: Orchestrais embedded in an OSGI bundle deployed in Felix OSGI platform.
Note that this distribution doesn't embed the SOA console.

As explained in Chapter 4, Configuration and Services, Orchestra can use different Web Service
frameworks. Apache Axisl and CXF are supported. For each web service framework, a tomcat package
and a Felix package are provided.

Theinstallation and configuration steps are independent of the web service framework.

3.1. Web Service Frameworks
3.1.1. Apache Axis

Orchestra web service implementation based on Axis 1.4 offers basic web service capabilities.

3.1.2. Apache CXF

Orchestraweb service implementation based on CXF offers advanced web service capabilities.
CXF implementation adds support for:

* WS-addressing

* WSRM

» Apache Camel

3.2. Orchestra Tomcat distribution

3.2.1. Installation

Unzip the orchestra-tomcat distribution package.

[punzip orchestra-tonctat-4.9.0-M.zip |

A new directory or chestra-t ontat - 4. 9. 0- M2 will be created. It contains an ant file to install and
start Orchestra.

3.2.1.1. Basic installation

Remark : Orchestra runs in Apache Tomcat serviet container. Tomcat 5.5.23 is delivered with the
Orchestra Package.

Toinstall Orchestra, go to orchestra directory and launch the install by running ant:

>cd orchestra-tontat-4.9.0-M
>ant install

Installation guide

The install script installs Tomcat and Orchestra. The default installation activates the persistence using
the H2 Database.

Important

if your network is based on a proxy, please specify the proxy settings in your
JAVA_OPTS environment property. The system properties to specify are described in
the Java documentation [http://download.oracle.com/javase/6/docs/technotes/guides/net/
properties.html].

3.2.1.2. Advanced installation: Using another tomcat distribution.

Orchestrais shipped with a lightweight Apache Tomcat Servlet container. This section explains how to
install Orchestrain an existing tomcat distribution.

The install.properties file in the conf directory contains the information used by Orchestra installation.
The default content is:

catal i na. home=${orchestra. dir}/toncat
catal i na. base=${cat al i na. hone}

To use another tomcat installation, just update the catalina.home and catalina.base properties before
caling:

|>ant install |

3.2.1.3. Advanced installation: into JOnAS

Orchestrais shipped with a lightweight Apache Tomcat Servlet container. This section explains how to
install Orchestrain a JONAS Application Server.

3.2.1.3.1. JOnAS 5

» Copy Orchestra conf into $JONAS BASE/conf (copy al files from orchestra conf directory to
$IONAS_BASE/conf).

» Copy jdbc jar driver into $JONAS BASE/lib/ext

* In orchestra.properties, change orchestra.servlet.port value to your JOnAS's tomcat port configuration
(cf $IONAS BA SE/conf/tomcat6-server.xml)

» Copy Orchestrawar (availablein orchestralib/ directory) to $JONAS BASE/deploy and start JOnAS
3.2.1.3.2. JOnAS 4

» Delete or upgrade xml-apis,jar, xercesimpl.jar and xalan-xxx.jar from $JONAS ROOT/lib/endorsed.
These libraries are needed for 2EE compatibility, but JOnA S4 can run fine without them. JOnAS4 has
old versions of these libraries, which creates incompatibility issues with Orchestra.

» Copy Orchestra conf into $JONAS BASE/conf (copy al files from orchestra conf directory to
$IJONAS BASE/conf).

¢ Copy jdbc jar driver into $JONAS_BASE/lib/ext

* In orchestra.properties, change orchestra.servlet.port value to your JOnAS's tomcat port configuration
(cf $JIONAS_BA SE/conf/server.xml)

http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

Installation guide

3.2.2.

3.2.3.

» Copy Orchestrawar (availablein orchestralib/ directory) to $JONAS_BA SE/webapps and start JOnAS

Database Management

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has also been tested with Oracle, MySQL and Postgres database system. To change
to MySQL, Postgres or Oracle, you need to put the corresponding JDBC driver in the directory
$CATALI NA_BASE/ I i b and modify the hi ber nate. properties file (see Section 4.4.4.1,
“Database Access Configuration”)

Orchestra directory structure

Hereafter isdetailed the structure of Orchestrainstallation. Theinstallation directory containsthefollowing
structure :

READVE
bui I d. xni
install.xmn
conmon. xm
Li cence. t xt
toncat/
conf/

doc/

exanpl es/
i b/

resour ces/

Let's present those items :
* README

Thisfile gives the basic information related to Orchestra
* build.xml

Thisfileisan ant file that provides tasksto install and use Orchestra. Just typing ant will result giving
you the usage.

* install.xml and common.xml
Thesefiles are ant files that are used by build.xml
* License.itxt
The license of Orchestra. All of Orchestrais available under the LGPL license.
* conf/
This directory contains al the configuration files of Orchestra.
* tomcat/
Thisdirectory isthe default Tomcat installation shipped with Orchestra.
* doc/

This directory contains the documentation of Orchestra. It contains:

Installation guide

* userGuide.pdf
For PDF documentation
e html/userGuide.html
For HTML documentation in asingle page
¢ html/userGuide/userGuide.html
For HTML documentation in different pages
* examples

This directory contains the examples provided with Orchestra package. See Section 5.3, “Running the
examples’

o lib/
This directory contains the libraries used in Orchestra.
* resources/

This directory contains Orchestra database creation scripts for supported databases and Orchestra
environment configuration examples.

3.3. Orchestra OSGI Felix distribution

3.3.1. Installation

Unzip the orchestra-felix distribution package.

|>unzi p orchestra-felix-4.9.0-M.zip |

A new directory or chestra-felix-4.9.0- M will be created. It contains an ant file to install and
start Orchestra.

Remark : Orchestra runs in Apache Felix OSGi platform. Felix 2.0.5 is delivered with the Orchestra
Package.

There is no specific installation step for running Orchestra :

[>cd orchestra-felix-4.9.0-M

The default configuration activates the persistence using the H2 Database.

I mportant
if your network is based on a proxy, please specify the proxy settings in your
JAVA OPTS environment property. The system properties to specify are described in
the Java documentation [http://download.oracle.com/javase/6/docs/technotes/guides/net/
properties.html].

3.3.2. Database Management

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has also been tested with Oracle, MySQL and Postgres database system. To change to MySQL,

http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

Installation guide

3.3.3.

Postgres or Oracle, you need to install the corresponding JDBC driver bundle in the OSGI platform and
modify the hi ber nat e. properti es file (see Section 4.4.4.1, “ Database Access Configuration™)

Orchestra directory structure

Hereafter isdetailed the structure of Orchestrainstallation. Theinstallation directory containsthefollowing
structure :

READVE
bui I d. xm
Li cence. t xt
bundl e/
felix/
conf/

doc/

exanpl es/
i b/

resour ces/

Let's present those items :

README
Thisfile gives the basic information related to Orchestra
build.xml

Thisfileis an ant file that provides tasks to use Orchestra. Just typing ant will result giving you the
usage.

License.txt
The license of Orchestra. All of Orchestrais available under the LGPL license.
conf/
This directory contains al the configuration files of Orchestra.
bundle/
This directory contains Orchestra OSGI bundles and dependencies.
felix/
This directory contains the Apache Felix bundle.
doc/
This directory contains the documentation of Orchestra. It contains:
* userGuide.pdf

For PDF documentation
e html/userGuide.html

For HTML documentation in asingle page

¢ html/userGuide/userGuide.html

Installation guide

For HTML documentation in different pages
* examples

This directory contains the examples provided with Orchestra package. See Section 5.3, “Running the
examples’

o lib/
This directory contains the libraries used for tests.
* resources/

This directory contains Orchestra database creation scripts for supported databases and Orchestra
environment configuration examples.

3.4. SOA console stand-alone installation

This section is aimed at users who wants to use the SOA Console with an existing Orchestra engine.

Todothis, you can download the SOA Consolewithout Orchestrafrom Orchestradownload page on OW2
forge : http://forge.ow2.org/projects/orchestra

Then, you need to extract the WAR in the webapps folder of atomcat or jetty server.

Last step isto modify the IMX information of orchestra.properties (in WEB-INF/classes directory of the
extracted war). Y ou'll need to change the port, service URL and object name with your Orchestra engine
ones:

Port of the JMX registry

orchestra.j nx. port=9999

JMX Service URL to connect to orchestra nbean server.

orchestra.jnx.serviceUrl =service:jm:rm:///jndi/rm://]ocal host: 9999/ orchestraServer
Nane of the Orchestra MBean

orchestra.jnx. obj ect N\ame=Or chestra: t ype=Renot eAP|

http://forge.ow2.org/projects/orchestra

Chapter 4. Configuration and Services

This chapter introduces the services configuration infrastructure provided by Orchestra as well as main

servicesincluded in this version.

4.1. Simple configuration

The orchestra.properties file in the conf/ directory contains properties that can be easily changed. These
properties are used by both orchestra client and orchestra server. Here is the default orchestra.properties

file:

orchestra.
orchestra.
orchestra.

orchestra. servl
orchestra. servl
orchestra. servl

et . host =l ocal host
et. port=8080
et . pat h=orchestral services

j mx. por t =9999
j mx. obj ect Nane=JMXAgent : name=or chest r aRenot eDepl oyer
jmx.serviceUrl=service:jmx:rm:///jndi/rm://|ocal host: 9999/ orchestraServer

» orchestra.servlet.host the host where orchestra server isinstalled.

« orchestra.serviet.port the port on which the web services will be exposed.

» orchestra.serviet.path the path on the server where the web services will
Orchestraweb serviceswill be available from http://${ orchestra.servlet.host} :${ orchestra.servlet.port} /

$orchestra.servlet.path} /serviceName

» orchestra.jmx.port the port of the IMX server.

* orchestra.jmx.serviceUrl the IMX service URL where the APl mbeans will be available.

* orchestra.jmx.objectName the name of Orchestra mbean.

4.2. Configuring logger

Itis possibleto activate thelogs. To do so, thefilel oggi ng. pr oper ti es under the directory conf /
can be edited. Here is the content of that file:

be exposed.

org.
org.
\
org.
org.
org.
org.

org.
org.
org.
org.
org.
org.

ow2

ow2.

ow2.
ow2.
ow2.
ow2.
For exanpl e,
com xyz. foo.level = SEVERE

.orchestra.
orchestra.

orchestra.
orchestra.
orchestra.
orchestra.

handl ers= java. util .| oggi ng. Consol eHandl er
.| evel = SEVERE

j ava. util .l ogging.
j ava. util .l ogging.

Consol eHandl er. | evel = FI NEST
Consol eHandl er. formatter = org.ow2.orchestra.util.TraceFornatter

util.TraceFormatter. alias=\
pvminternal . w re. descriptor. Hi bernateConfigurati onDescri ptor~hi bernateConfigurati

depl oynment . Depl oyer ~depl oyer, \

f acade. j nx. Renot eDepl oyer MBean~api , \
persi stence. | og. Logger Recor der ~r ecor der, \
persi stence. | og. Logger Ar chi ver ~ar chi ver

set the comxyz.foo |logger to only | og SEVERE nessages:

hi ber nat e. | evel =SEVERE

ow2. orchestra. pvminternal .wire.descriptor. H bernateConfigurati onDescriptor.|evel =FI NE
hi ber nat e. event . def . Abst ract Fl ushi ngEvent Li st ener. | evel =OFF

ow2. or chestra. jnx. | evel =I NFO

ow2. or chestra. osgi . Engi ne. | evel =I NFO

ow2. orchestra. pvminternal . svc. Def aul t CommandSer vi ce. | evel =OFF

on,

10

Configuration and Services

org. ow2. orchestra. pvminternal .tx. StandardTransactionl nterceptor.|evel =OFF
or g. ow2. or chestra. depl oynment . Depl oyer. | evel =FI NE

or g. ow2. or chestra. test. Envi ronment Test Case. | evel =FI NE

or g. ow2. orchestra. test.renote. Renot eTest Case. | evel =FI NE

org. ow2. orchestra. pvm | evel =WARNI NG

org. ow2. orchestra. | evel =WARNI NG

or g. ow2. orchestra. StartupLi stener. | evel =l NFO

#or g. ow2. or chestra. persi stence. | og. | evel =FI NE

Uncomment the last lines to activate the logs.

4.3. Services Container

4.3.1.

The Process Virtual Machine technology includes a services container allowing the injection of services
and objects that will be leveraged during the process definition and execution. Objects and services used
by the Orchestra engine are defined through a XML file. A dedicated parser and a wiring framework are
in charge of creating those objects. Service invoker, publisher, persistence and timers are examples of
pluggable services.

This services container (aka |oC container) can be configured through a configuration file. A default
configuration file isincluded in the package under the /conf directory (environment.xml).

This configuration is only used on the server side.

Environment.xml file

The default environment.xml file created during the installation of Orchestra is set to use the database
implementation of the persistence service. This file also sets the configuration of hibernate. Here is the
environment.xml file generated :

<envi ronnent - def i ni ti on>
<environnent-factory>
<properties name="orchestra-properties" resource="orchestra.properties"/>
<hi ber nat e- confi gurati on nane="hi bernate-configuration: core">
<properties resource="hibernate.properties"/>
<mappi ngs resour ce="hi bernat e/ bpel . core. mappi ngs. xm "/ >
<mappi ngs resour ce="hi bernat e/ bpel . moni t ori ng. mappi ngs. xm "/ >
<cache-configuration resource="hi bernat e/ bpel.cache. definition.xm" usage="nonstrict-read-
wite"/>
</ hi ber nat e- confi gurati on>
<hi ber nat e- sessi on-factory configurati on="hi bernate-configuration:core" init="eager"
nanme="hi ber nat e- sessi on-factory: core"/>
<conmand- servi ce>
<orchestra-retry-interceptor delay-factor="2" retries="10"/>
<envi ronment -i nt erceptor/ >
<standard-transacti on-interceptor/>
</ command- servi ce>
<i nvoke- executor threads="10"/>
<j ob-executor auto-start="fal se" |ock="180000" threads="10"/>
<hi ber nat e- confi gurati on nane="hi bernate-configuration: history">
<properties resource="hi bernate-history.properties"/>
<mappi ngs resour ce="hi bernat e/ bpel . moni t ori ng. mappi ngs. xm "/ >
<mappi ng resour ce="hi bernate/bpel.util.hbmxnm"/>
</ hi ber nat e- confi gurati on>
<hi ber nat e- sessi on-factory configurati on="hi bernate-configuration: history" init="eager"
nane="hi ber nat e- sessi on-factory: history"/>
<repository class="org.ow2. orchestra. services.inpl.DbRepository"/>
<publ i sher cl ass="org.ow2. orchestra. cxf.CxfPublisher"/>
<i nvoker class="org.ow2.orchestra.cxf.Cxflnvoker" nane="servicel nvoker"/>
</ environnent-factory>
<envi r onnent >
<hi ber nat e- sessi on factory="hi bernat e-sessi on-factory: core" nane="hi bernat e-sessi on: core"/>
<runti me- db- sessi on nane="runti me-sessi on: core" sessi on="hi ber nate-sessi on:core"/>
<transaction/ >
<tinmer-session retries="10"/>

11

Configuration and Services

<message- session retries="10" use-fair-scheduling="false"/>
<j ob- db- sessi on sessi on="hi ber nat e- sessi on: core"/ >
<journal class="org.ow2.orchestra. persistence.db. DbJournal " nanme="j ournal ">
<ar g>
<ref object="querier-session:core"/>
</ arg>
</j our nal >
<queri er - db- sessi on name="queri er-sessi on: core" sessi on="hi bernat e-sessi on: core"/>
<hi story cl ass="org. ow2. orchestra. persi stence. db. DbHi story" nanme="hi story">
<ar g>
<ref object="querier-session:history"/>
</ arg>
</ hi story>
<hi ber nat e- sessi on factory="hi bernat e-sessi on-factory: hi story" name="hi ber nat e-sessi on: hi story"/

<queri er - db- sessi on name="queri er-sessi on: hi story" sessi on="hi bernat e-sessi on: history"/>
<chai ner name="recorder">
<recorder class="org.ow2.orchestra. persistence.| og. Logger Recorder"/>
<ref object="journal"/>
</ chai ner >
<chai ner name="ar chiver">
<archi ver cl ass="org.ow2. orchestra. persistence.| og. Logger Archiver"/>
<ref object="history"/>
</ chai ner >
<quer yApi name="queryList">
<ref object="journal"/>
<ref object="history"/>
</ quer yApi >
<chai ner name="fi ni shed-i nstance-handl er">
<fi ni shed-i nstance- handl er
cl ass="org. ow2. orchestra. servi ces. handl ers. i npl . Del et eFi ni shedl nst anceHandl er"/ >
<fi ni shed-i nstance- handl er
cl ass="org. ow2. orchestra. servi ces. handl ers. i npl . Archi veFi ni shedl nst anceHandl er "/ >
</ chai ner >
<chai ner name="undepl oyed- pr ocess- handl er ">
<undepl oyed- pr ocess- handl er
cl ass="org. ow2. orchestra. servi ces. handl ers. i npl . Archi veUndepl oyedPr ocessHandl er"/ >
</ chai ner >
</ envi r onnment >
</ envi ronment - def i ni ti on>

Currently, following objects implementations can be injected in the environment:

» publisher: object intended for publishing services of the given BPEL process. For web services based
on axis framework, default class is org.ow?2.orchestra.axis.AxisPublisher. For web services based on
CXF framework, the default classis org.ow2.orchestra.cxf.CxfPublisher.

* invoker: object intended for external web services invocations. Default implementation is based on
SAAJ through the default implementation (class org.ow2.orchestra.services.impl.SOAPInvoker). For
web services based on CXF framework, the default class is org.ow2.orchestra.cxf.Cxflnvoker

* repository: data repository storing processes and instances.. Database persistence (class
org.ow2.orchestra.execution.services.db.DbRepository) implementation is included in this release.

 recorder: object responsible of process execution logs. Default implementation handles processlogsin
the command line console (org.ow2.orchestra.persistence.log.L oggerRecorder). Recorder and Journal
(see next) objects can be chained (new ones can be added as well on top of the recorder chainer). This
give you a powerful mechanism to handle process execution data.

* journal: object responsiblefor storing or retrieving process execution data. Database persistence (class
org.ow2.orchestra.persistence.db.DbJournal) implementation is provided by default.

e archiver: object intended for process logs archiving. Default implementation
handles logs on process data archiving through the default implementation (class
org.ow2.orchestra.persistence.log.LoggerArchiver). Archiver and History (see next) objects can be
chained (new ones can be added as well on top of the archiver chainer). This give you a powerful
mechanism to handle process archived data

12

Configuration and Services

*

history: object intended for storing or retrieving process archived data. Default implementation is
provided and available in the following class. org.ow?2.orchestra.persistence.db.DbHistory.

queryList: object intended to configure how the QueryRuntimeAPI will retrieve the process execution
data. Thisretrieval could be configured to chain with the expected order into the journal and the history.

finished-instance-handler: action to perform when a process instance is finished. This object could
chain two or more distinct actions: for agiven processinstance, deleting the runtime object including its
activities from the repository and then store data in the archive and remove data from journal. Default
implementations are proposed for both chained actions.

undeployed-process-handler: action to perform when a process is un-deployed. This object could
chain distinct actions. Default implementation stores datain the archive and removes data from journal.

dead-job-handler: action to perform when a asynchronous execution has failed al the retries. This
object could chain distinct actions. Default implementation exits the process instance that failed to
execute asynchronousdly.

Note 1. As explained before persistence objects are provided as default implementations in the

environment. Notice that in a persistence configuration additional resources are required, i.e for hibernate
persistence you can specify mappings, cache configuration...

* Note 2: The environment is divided in two different contexts: environment-factory and environment.
Objectsdeclared inside the environment-factory context are created once and reused while objectsdeclared
inside the environment context are created for each operation.

4.4. Services

Services in Orchestrais all about pluggability. To allow that, each service has been thought in terms of
an interface with different possible implementations. In the following lines you will find a description of
main services supported in Orchestra.

The PVM includes aframework to allow theinjection of services and objectsthat will be leveraged during
the process definition and execution. Objects and services required in Orchestra are defined through an
XML file. A dedicated parser and wiring framework in the PVM isin charge of creating those objects.

A default environment file (environment.xml) is provided in the installed package.

Currently, following objects are required for the execution environment :

publisher

invoker

repository
persistence

timer

journal and history

querier

Example of implementation classes for these objects are embedded into the Orchestra jar and defined into
the environment.xml file.

13

Configuration and Services

4.4.1.

4.4.2.

4.4.3.

4.4.4.

Publisher

The publisher service sets the way the services proposed by the BPEL processes will be published. The
default implementation of this service uses the Axis Web Service Container.

Invoker

The invoker service sets the way the BPEL processes will call external services. The default
implementation of this service uses the SAAJimplementation.

Repository

The repository service sets the way the data will be handled by the engine. Orchestra proposes one
implementation managing data in the database.

Persistence

Persistence is one of key technical services injected into the services container. This service, as well as
other major services in Orchestra, is based on a service interface. That means that multiple persistence
implementations can be plugged on top.

The Persistence service interface is responsible to save and load objects from a relational database. By
default, a persistence implementation based on the Hibernate ORM framework is provided (JPA and JCR
to come).

The Process Virtual Machine core definition and execution el ements (processes, nodes, transitions, events,
actions, variables and executions) as well as the BPEL extension ones (activities, conditions, variables...)
are persisted through this service. Process Virtual Machine core elements are al so cached by leveraging the
default persistence service implementation (Hibernate based). Processes and instances are stored through
this persistence service. Repository isthe term used in Orchestra to store those entities.

This serviceis only used if the repository serviceis set to database.

4.4.4.1. Database Access Configuration

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has also been tested with Oracle, MySQL and Postgres database system. To changeto MySQL,
Postgres or Oracle, you need to install the corresponding JDBC driver (see Chapter 3, Installation guide)
and modify the hi ber nat e. properti es file: uncomment the corresponding lines:

Hi bernate configuration

For using Orchestra with H2

hi bernat e. di al ect org. hi bernate. di al ect. H2Di al ect
hi bernate. connection.driver_class org. h2. Driver

hi ber nat e. connection. url jdbc: h2:file:db_orchestra

hi ber nat e. connect i on. user nane sa

hi ber nat e. connecti on. password

For using Ochestra with postgreSQ

hi bernat e. di al ect org. hi bernate. di al ect. Post greSQ.Di al ect
hi bernat e. connection. driver_cl ass org. postgresql.Driver

hi ber nat e. connection. url j dbc: postgresql ://server: port/db
hi ber nat e. connecti on. user nane user

hi ber nat e. connecti on. password pass

For using Ochestra with M/SQL

14

Configuration and Services

4.4.5.

4.4.6.

4.4.7.

hi bernat e. di al ect org. hi bernate. di al ect. My\SQL51 nnoDBDi al ect
hi bernat e. connection. driver_cl ass com nysql . jdbc. Driver

hi ber nat e. connection. url jdbc: nysql ://server:port/db

hi ber nat e. connect i on. user nane user

hi ber nat e. connecti on. password pass

hi ber nat e. di al ect org. hi bernate. di al ect. H2Di al ect

hi ber nat e. connection. driver_cl ass org. h2. Driver

hi ber nat e. connecti on. url jdbc: h2:file:db_orchestra

hi ber nat e. connecti on. user nane sa

hi ber nat e. connecti on. passwor d

hi ber nat e. hbnddl . aut o updat e

hi ber nat e. cache. use_second_| evel _cache true

hi ber nat e. cache. provi der_cl ass or g. hi ber nat e. cache. Hasht abl eCachePr ovi der
hi ber nat e. show_sq|l fal se

hi ber nat e. f or mat _sql fal se

hi ber nat e. use_sql _comment s fal se

hi ber nat e. byt ecode. use_refl ecti on_opti m zer true

Journal and History

Thismodule concernstheway in which the process datais stored during the process execution and archived
when the execution is completed. Thisisindeed a crucial module in a process solution.

Orchestra unifies journal data et history data as the underlying essence of both is to handle process data.
For that to be done, we created the concept of process record. A record is a minimal set of attributes
describing a process entity execution. That means that each process entity related to the execution hasits
own associated record.

Those records are recorded during the process execution and stored depending on the persistence service
implementation (DB, XML...). The Orchestra APl will retrieve record data from the records storage and
sent them back to the users (meaning that records also acts as value objectsin Orchestra APIs).

Assoon asaprocessinstance isfinished, atypical scenario would be (by default) to moveinstance related
process data from the production environment to a history one. While the physical device and the data
structure could changed from one process engine deployment to another (XML, Bl database...), theinternal
format could remain the same (records). This is exactly what is happening in Orchestra, when archiving
data the engine just move execution records from the production to the history environment without data
transformation in between.

Journal and history data are persisted in different database. Change hibernate.properties [hibernate-
history.properties] filein conf directory to modify the journal [history] database

Querier

The querier isan API tool for getting process records corresponding to different criteria. It can get records
from journal, from history or both. This possibility is defined in the environment. Several parameters
will alow us to obtain this information by various criteria: their state (running or after delivery) or ID.
Depending on the circumstances this request will return arecord, a set of records or an empty table.

Command service

The command service manages the environments and the transactions in Orchestra. Each process or AP
method is executed by the command service.

Its definition in the environment is the following :

|<command- servi ce>

15

Configuration and Services

4.4.8.

<orchestra-retry-interceptor delay-factor="2" del ay="100" nax-del ay="10000" retri es="10"/>
<envi ronnent -i nt erceptor/ >
<standard-transacti on-interceptor/>

</ command- servi ce>

The retries (optional) attribute can be used to define how many times commands will be tried before
propagating the exception. Thisattributeisignored for jobs (see Section 4.4.8, “ Asynchronous Executions
(Jobs)").

The delay, max-delay, delay-factor (optional) attributes can be used to define the sleep time between each
retry. The sleep time for the nt" attempt is given by

|sl eep = ni n($nax-del ay, $delay * $del ay-factor * randon(1, $del ay-factor)") |

delay and max-delay values are in milliseconds.

Asynchronous Executions (Jobs)

To optimize the execution, Orchestra splits the execution in small steps. A job represents a step of an
execution. It can be executed in parallel with other jobs. Jobs are grouped in two sets. messages, which
can be executed immediately, and timers, whose executions are scheduled at a precise date.

Timers are used for the BPEL statements "wait" and "onAlarm".

Messages are used for the BPEL statements "receive”, "onEvent”, "onMessage" and "invoke".

Orchestrausesthe PVM Job executor serviceto handlejobs. Jobs are created using either the timer on
service or the message session service. Thejob executor then fetchesthe job from the database and perform
the instructions contained in the job.

4.4.8.1. Timer session

A timer session service is required to schedule timers in the PVM. Its definition in the environment is
thefollowing :

|<t i mer-session retries="5"/> |

Thetimer session retries (optional) attribute can be used to define how many times the job will be retried
before it becomes dead (see Section 4.4.8.4, “Dead jobs’).

4.4.8.2. Message session

A message session serviceis required to schedule messagesin the PV M. Its definition in the environment
isthefollowing :

|<rressage- session retries="5" use-fair-scheduling="false"/> |

The message session retries (optional) attribute can be used to define how many times the job will be
retried before it becomes dead (see Section 4.4.8.4, “Dead jobs”).

The message session use-fair-scheduling (optional) attribute can be used to define if the jobs should be
executed with the same priority or if the jobs of older instances should be executed first.

4.4.8.3. Job Executor

The job executor fetches the jobs to execute from he database, and then executes the job.

Default implementations of the job executor uses a thread pool to execute jobsin parallel.

16

Configuration and Services

There are two default implementations of the job executor:

» animplementation using athread pool with afixed size. This serviceis defined in the environment file
with the following line :

[<j ob- executor threads='10' auto-start='false' /> |

The number of thread is defined by the threads attribute. This implementation is the default
implementation.

e an implementation wusing a thread pool with a variable size (based on
java.util.concurrent.ExecutorService). This serviceis defined in the environment file with the following
line:

|<j ob- executor type='jdk' auto-start='false' /> |

Optional attributes can be defined in the environment to configure the job executor service:

» command-service: name of the command service to use to execute jobs. Only necessary if more than
one command service exists.

* dead-job-handler: name of the command service to use to handle dead jobs. Only necessary if more
than one dead job handler exists.

* idle: polling interval of the job database (in milliseconds). Note that the job executor is notified of job
added by message and timer session services. Polling isjust to check no notification has been missed.

 lock: before a job is executed by a job executor thread, the thread locks the job to be sure no other
threads executes the same job. The lock attribute specifies the duration of the lock (in milliseconds).
When the lock expires, a new thread can execute the job again (can happen if a job executor thread
dies unexpectedly).

« limit-job-per-instance: specifies if jobs of a process instance should be executed sequentialy. If this
atribute is set to false, jobs of the same instance can be executed in paralldl.

» queueSze: specifies the maximum number of jobs locked by the job executor, but waiting for a job
executor thread to execute them.

» acquireSize: specifies the number of jobs fetched from the database and locked at the same time.
Increasing this number can reduce the number of database transactions, but can reduce paralelismin
clustered environments.

» addQueueSze: specifies the maximum number of jobs that can be directly locked by thisjob executor.
If anew job is created during the execution of ajob by thisjob executor, the job will directly be locked
by thisjob executor and added to the waiting queue. Increasing the add queue size reduces the number
of database transactions, but setting atoo important value can cause jobs locks expirations.

4.4.8.4. Dead jobs

If an exception occurs during ajob execution, the job executor will decrement the retry counter of the job.
While the retry counter is positive, the job executor will pick the job and try to execute it again.

When the job retry counter is zero, the job executor will not execute the job again. The job becomes a
dead job.

If adead job handler exists in the environment, it will be executed.

The default retry counter value for ajob can be set in the message session configuration.

17

Configuration and Services

4.4.8.4.1. Dead Job Handler (DJH)

DJH are executed after ajob retry counter hasreached zero. Orchestra providesfollowing implementations
in the package org.ow2.orchestra.services.handlers.impl:

» ExitInstanceDeadJobHandler : exits the BPEL instance which has faulted.

» ThrowBpel FaultDeadJobHandler : throw a BPEL fault { http://orchestra.ow2.org} jobExecutionFault to
the BPEL instance which has faulted. The fault can be handled by a catch activity.

By default, the Dead Job Handler is disabled (no dead job handler is used).

4.4.8.4.2. Interacting with dead jobs

The management API provides methods to find dead jobs and to reset the retry counter of a job to a
specified value.

If you want to manage the dead jobs manually, you need to disable the Dead Job Handler.

Refer to Section 9.1, “Orchestra APIS’ for more information on how to use the APIs.

4.4.8.5. Invoke Executor

4.4.9.

The invoke executor executes external web services calls. Invoke are executed by a separate thread pool.
Thethread is hold until the web service response is received.

Default implementation of the invoke executor uses athread pool to execute invoke in parallel.

The default implementation of the invoke executor use a thread pool with a fixed size. This service is
defined in the environment file with the following line :

|<i nvoke- executor threads="10" /> |

The number of thread is defined by the threads attribute. This parameter defines the maximum number of
invoke that can be executed simultaneously.

Finished instance handler (FIH)

FIH are executed after the instance finished. Orchestra provides following implementationsin the package
org.ow2.orchestra.services.handlers.impl:

» NoOpFinishedinstanceHandler : do nothing
* CleanJournalFinishedinstanceHandler : remove instance data from journal

* ArchiveFinishedinstanceHandler : remove instance data from journal and put it in history (used by
default)

 DeleteFinishedinstanceHandler : delete instance data from orchestra repository (used by default)

4.4.10. Undeployed process handler (UPH)

UPH are executed after the process is undeployed. Orchestra provides following implementations in the
package org.ow?2.orchestra.services.handlers.impl :

» NoOpUndeployedProcessHandler : do nothing

18

Configuration and Services

« CleanJournalUndeployedProcessHandler : remove process data from journal

* ArchiveUndeployedProcessHandler : remove process data from journal and put it in history (used by
default)

19

Chapter 5. User guide
5.1. Start and Stop Orchestra

Orchestraisawebapp that can be deployed on Tomcat. So starting Orchestrain fact starts Tomcat with the
correct environment. This can be performed from the installation directory with the following command
line:

>cd orchestra-tontat-4.9.0-M
>ant start

Starting Orchestrawill not be done in background. This means that the console starting Orchestrawill be
dedicated to the traces from Orchestra. To perform further actions, new consoles need to be opened.

To stop Orchestra, type the following command line :

>cd orchestra-tontat-4.9.0-M
>ant stop

5.2. Other commands

Orchestra provides a set of other commands that can be useful

» A command to check the status of Orchestra. Thiscommand tellsif the engineis started and if so, gives
the names of processes deployed on the engine :

[>ant status |

* A command to simulate a Web Service call. This command will simulate a WS call to interact with a
deployed process :

|>ant cal | -Dendpoi nt=<service_url> -Dacti on=<SOAP_acti on> - Dressage=<message> |

For example:

>ant call -Dendpoint=http://|ocal host: 8080/ orchestra
-Daction=http://orchestra. ow2. org/ weat her Arti fact s/ process/ weat her PT
- Dnessage="<weat her Request xm ns='http://orchestra. ow2. or g/ weat her' >
<i nput >Gr enobl e, France</i nput >
</ weat her Request >"

5.3. Running the examples

The Orchestra package contains examples of BPEL processes:

* loanApproval: invokes two local web services. This example istaken from the BPEL 2.0 standard.
Thisis an example from the BPEL 2.0 standards

» weather: invokes a remote Web Service and returns the current weather.
This example shows how to call areal world Web Service.

» echo
This example shows a basic synchronous BPEL process.

* orderingService

20

User guide

This example shows how to use pick instruction and correlations.
* producerConsumer
This example shows how executions can be saved and restarted after a crash.

A build.xml fileis provided for each of those samples. Those ant scripts provide the sametargetsto deploy,
launch and undeploy the sample. Go to the desired example and use the command lines :

>ant depl oy
>ant | aunch
>ant undepl oy

5.4. Running the tests

Orchestrais delivered with a test suite to check if your installation is correct. There are 3 different tests
available:

» Core test suite. This suite tests the core functionalities of the engine (e.g. BPEL activities, variables,
etc...). To run this test suite, the server should not be started.This test suite can be launched with the
following command :

[>ant test |

» Remote test suite. This suite gives the possibility to test the Web Service stack deploying and launching
real processes. Thistest suite can be launched with the following command (server should be started) :

[>ant test-renote |

* Sress test suite. This suite will launch a small stress test. This test suite can be launched with the
following command line:

[>ant test-stress |

A command is also provided to launch those 3 test suites at once:

[>ant test-all

Theresults of the tests are available under the directory t est resul t s.

5.5. Process designers

For the new version, Orchestra does not ship a graphical designer. Orchestra engine has been tested with
processes created using the Netbeans BPEL designer [http://soa.netbeans.org/]. It is also possible to use
the Eclipse BPEL designer [www.eclipse.org/bpel/] . Download and installation instruction are available
on the project web site. However we have encountered a few bugs in the eclipse designer. So we advise
the use of NetBeans.

Thereisawork in progressto provide aWeb 2.0 designer, using BPMN 2.0, that will be accessible directly
from the console. A preview is already available.

5.6. Deploying / undeploying a process

Once Orchestrais started, it is then possible to deploy a new process on the engine :

|>ant depl oy - Dbpel =<process>. bpel -Dwsdl =<process>. wsdl - Dextwsdl =<wsdl 1, wsdl 2> |

Orchestra also provides the possibility to use an archive to deploy a process. This archive should be azip
file with the extension .bar. Here is the command line to deploy such an archive :

21

http://soa.netbeans.org/
http://soa.netbeans.org/
www.eclipse.org/bpel/
www.eclipse.org/bpel/

User guide

|>ant depl oy - Dbar =<process>. bar

Warning : The archive should be a zip file structured as described bellow :

/ <process>. bpel
/ <process>. wsdl
/ <files>. wsdl

To undeploy a process, use the following command line:

|>ant undepl oy - Dprocess=<process_nane> |

Warning : the process name should be fully qualified. This means that it needs to contain to namespace.
For instance:

[{http://orchestra. ow2. or g/ weat her } weat her |

Details of deployment errors are logged into the "error.txt" file.

Alternatively you can use Section 6.3, “Process View” to deploy a.bar file.

5.7. Process lifecycle

A process has three states:

e active: thisis the default state when a process is deployed. The process can create new instances, and
running instances can finish their execution. Process web services are deployed and active.

« retired: The process cannot create new instances, but running instances can finish their execution.
Process web services are deployed and active.

« undeployed: The process cannot create new instances. There are no more running instances. Process
web services are not deployed (and disabled).

A process can change state from:
e activetoretired
 retired to active

 active to undeployed

« retired to undeployed

Orchestra 4.5 Orchestra 4.6

22

User guide

Process lifecycle.

23

Chapter 6. Console User Guide

In this chapter we present the possibilities of the SOA Console.

6.1. Quick start guide

In this chapter we present a quick start documentation for SOA Console. In the next chapters we will
explain in more details the functionalities available in this rel ease.

Thefirst step to begin with SOA Consoleisto log on the server. To do this, you haveto:
- Open acommand line and execute the following under the orchestra-cxf-tomcat-4.9.0-M2 directory :
ant start

- In your web browser connect to the following URL : http://localhost:8080/consol e/ It's the default URL,
otherwise the correct syntax is : http://hostname: portnumber/console

You'll have to connect with :
1. User Name: orchestra

2. Password: orchestra

— Please Login

Username :

[l

Password :

[l

Login

6.2. Default Users

By default, the SOA Console has one user registered. It's important to change this users' list as soon as
possibleto control the access on your engine. To do this, you'll find a"tomcat-users.xml” filein repository
tomcat/conf/ and you'll have to modify these following lines to modify the accesslist :

<t ontat - user s>
<l--
NOTE: By default, no user is included in the "manager" role required
to operate the "/manager" web application. |If you wish to use this app,
you nust define such a user - the usernane and password are arbitrary.
-—>
<l--
NOTE: The sanple user and role entries bel ow are wapped in a comment
and thus are ignored when reading this file. Do not forget to renove
<l.. ..> that surrounds them

<l--
<rol e rol ename="toncat"/ >
<rol e rol ename="rol el"/ >

24

http://localhost:8080/console/

Console User Guide

<user username="tonctat" password="tonctat" roles="tontat"/>
<user username="both" password="tontat" rol es="tontat,rolel"/>
<user username="rol el" password="tontat" roles="rolel"/>
-->
<user username="orchestra" password="orchestra" rol es="user"/>
</tontat - user s>

Theroles are defined in web.xml file. By default, you can log with user and admin asrole but this version
doesn't implement the role mechanism.

This is the standard authentication mechanism for servlet container, you can find more details on this
URL : http://tomcat.apache.org/tomcat-6.0-doc/real m-howto.html

6.3. Process View

Thisisthefirst view you'll see when connecting to the console. Its purpose isto display the processes on
Orchestra but you can switch to the instances tab to display the instances on Orchestra. Thisis the global
mechanism to change view for the entire application.

You have the possibility on each view to sort the tables as you want clicking on the title labels except

Actions one.
| SOA console

Connected to Orchestra Refresh null connected since 21/10/2010 at 11:05:33 Logout
Processes | Instances Finder
uuiD Name Namespace Version Deploy Date Date State ~ _{\cliﬂns
1 e netbeans org/ap 1 1 1021/2010a10937:31 10212010 at11:33 41 undeployed I K
2 orderingServ.. htp: aw2 1 10/21/2010 at11:32:50 NIA retired HERUINIEI]
3 producerCons... hitp: ow2 P onsumer T, 10/21/2010 at 11:33:00 NIA active mu@;‘,
4 weather ‘hitp Jorchestra.ow2.orgiveather 1 10/21/2010a111:33:21 NIA active EIIIE
5 orderingServ.. htipJiorchestra.ow2.orgfdemos/orderingService 2 10/21/2010 at11:33:34 NiA active SIEIUIWE
3 echo yifenterprise netbear f 1 1 1 10/21/2010 at11:33:52 NIA active UG
Deploy a process: _P_ar_ciu@:._ || ﬂ[ﬂﬂ |

6.3.1. Deploy a process

In the processes view tab, you have the possibility to deploy a process:

SOA console '

Connected to Orchestra Refresh null connected since 21/10/2010 at 08:44:10 Logout
Processes | Instances Finder

uuiID Name Namespace Version Deployment Date Undeployment Date State * Actions

Deploy a process: | .Parcourir... || Upload |

Once you have clicked the browse button, you'll have to choose a process to deploy through your file
system. On Orchestra, processes are .bar files containing at least one WSDL file and one BPEL file.

Choose your process to deploy and click the upload button :

25

http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

Console User Guide

3|

Envoildulfichier X

@ " H examples at15:03:20 Logout
= E. g J

Emp it [echu.bar] - Actons

|Baccuurcw5 Nom v Modifig

&% Rechercher D build.xml Aujourd'hui & 09:24

@ Récemment utilisés ™'echo.bar Aujourd'hui 8 15:18

Iy | | echo.bpel Aujourd'hui a 09:24

T Bureau || echo.wsd! Aujourd'hui a 09:24

[systéme de fichiers
(=) DATA
(] Volume 48,8 Gio

Once Orchestra has finished to deploy the process, the Processes tab will automatically refresh with the
new process and a pop up information will be displayed :

Information !
6 File deployed on orchestra

| 2 Close |

To test the console, you can use the Orchestra examples delivered within the package running the
command : ant deploy. Y ou can use the file upload widget too but make sure that the port in soap:address
inthe WSDL file is the same as the tomcat port.

Y ou can aso run instances with the command : ant launch

6.3.2. Information about a process

For each process deployed on Orchestra, the following fields will be displayed :
1. UUID
It'sthe ID of the process on Orchestra. This D is unique, it can correspond to only one process.

2. Name

26

Console User Guide

6.3.3.

It's the name of the process deployed

. Namespace

It's the namespace of the process. The concatenation of name and namespace identifies a unique
deployed process too.

. Version

It's the version number of the process. (see for Section 8.4, “Process versioning with Orchestra’ more
details)

. Deployment Date

It's the date when the process has been deployed on Orchestra.

. Undeployment Date

It's the date when a process has been undeployed. For a process not undeployed yet, this field will be
"N/A" for Not Applicable.

. State

It's the state of the process, the different values are "active", "retired" or "undeployed" (see for
Section 5.7, “Process lifecycle” more details)

. Actions

It's the different actions possible on each process.

Actions on a deployed process

In the last column of the grid, you'll find the actions possible on a process :

Actions
DOV W@

Icon Description ;

1

2.

3.

4,

5.

=% anew tab is added with instances of the corresponding process.
L1 anew tab is added with detail s and definition activities of the corresponding process.

W e the corresponding process version as retired. (see for Section 5.7, “Process lifecycle” more
details)

W st the corresponding process version as active. (see for Section 5.7, “Process lifecycle” more
details)

@ the process will be undeployed. It will always be on the processlist but its state will be undeployed
and so, it will not be possible to instantiate it.

27

Console User Guide

6.
H the process will be totally removed from engine, contrary to the undeployment.

Note that these icons are disabled when the actions are not possible.

6.4. Instance View

The second tab will alwaysbe alist of al instances of all processes on Orchestra but you can, with actions

bar, open a new view with instances for a specific process.

SOAconsole 1

Connected to Orchestra Refresh user connected since 26/05/2010 at15:18:59 Logout

Processes Iml

uup Process UUID Process Name State StartDate LastUpdate Date Actions

6952018 69 echo finished 05/26/2010 at 15:23:40 05/26/2010 at 15:23:40 OVUUO X
6952024 69 echo finished 05/26/2010 at 15:23:43 05/26/2010 at 15:23:43 CTRTRT T
7252007 72 weather finished 05/26/2010 at 15:23:34 05/26/2010 at 15:23:36 OVUUO X
7252030 72 weather finished 05/26/2010 at 15:23:47 05/26/2010 at15:23:48 O wuo X
73§2001 73 producerCons.. funning 05/26/2010 at 15:23:20 05/26/2010 ai 15:23:20 O OUOo X
73$2041 73 producerCons running 05/26/2010 at 15:23:55 05/26/2010 at 15:23:55 O W WO

6.4.1. Information about an instance

For each instance executed on Orchestra, the following fields will be displayed :
1. UUID
It'sthe ID of the instance on Orchestra. ThisID is unique, it can correspond to only one instance.
2. Process UUID
It's the unique ID of the process corresponding to the instances displayed.
3. Process Name
It's the name of the process corresponding to the instances displayed.

4, State

It's the state of an instance. The different values are "running"”, "suspended”, "finished" or "exited".

5. Start Date

28

Console User Guide

6.4.2.

It's the date when the instance has begun.
6. Last Update Date

It's the date of last update of the instance and the end date for an instance terminated.
7. Actions

It's the different actions possible on each instance.

Actions on an instance

In the last column of the grid, you'll find the actions possible on an instance :

Actions
LT LT PR
Icon Description ;
1 “ anew tab is added with details and activities corresponding to the selected instance.
2. ¥ the instance will be suspended until you click on the next icon.
3. H the instance previously suspended will be resumed.

4. % theinstance will be terminated and its state will be "exited".

5. H the instance will be totally removed from the history base.

Note that these icons are disabled when the actions are not possible.

29

Console User Guide

6.5. Activities View
O SOACOnsoie

c

Connected to Orchestra Pefresh user connected since 26/05/2010 at15:50:52 Logout
Processes Instances |gyecho x
UUID Name Namespace Deployment Date Undeployment Date State Actions
69 echo http:ffenterprise.netbeans.... 05/26/2010 at 15:21:25 MNIA deployed £ &% @ 3¢
Activity UUID v Type Name
69 PROCESS echo
69§10-C. COMPENSATE autoGenerated_DefaultCH_process echo_compensate
69%2-SE.. SEQUENCE unnamed
6933-RE.. RECEIVE start
69%4-AS ASSIGN Assignl
6955-RE REPLY end
69%7-TE TERMINATION_HAMDLER autoGenerated_DefaultTH_process echo
6938-CO.. COMPENSATE autoGenerated_DefauliTH_process echo_compensate
6939-CO.. COMPEMSATION_HAND... autoGenerated_DefaultCH_process echo

This view is displayed on its own tab when you click on the activities icon as explained in the previous
section. Y ou can open an activities tab for a process, these activitieswill be the definition activities of the
process. Y ou can open an activities tab for an instance, these activities will be the runtime activities of the
specific instance, so you'll see what activities are already done by the instance and which one is running.
Definition activities and execution activities contain 2 separate views :

1. Detailsview : Thisfirst grid gives information about the process/instance.

2. Activity view : This second grid gives the whole list of activities executed by a process for a process
and the list of activities already executed for an instance.

Note that in the details view, you have the possibility to interact with the process/instance selected thanks
to the Actions column as explained in previous section.

6.6. Other Features

Some other features are available when any tab is selected. You can:
1. Sort your grids depending on every field except Actions.

2. Check your connection to Orchestra at any time on the info labels just below the banner. The refresh
label alows you to check if the connection to Orchestrais always unavailable.

3. Check your login information on the same info banner.

4. Logout from the console at any time clicking the Logout label.

Connected to Orchestra Fefresh user connected since 26/05/2010 at 15:50:52 Logout

30

Chapter 7. Designer User Guide
7.1. Quick start guide

7.2. Default Users

Same users defined for the Console are used for the Designer. See Console user guide.

7.3. Editor

In the Designer there are 5 main parts detailled below :

Orchest

Edt Option Help |

1 [|connected as orchestra 4 L

EE Be®%0 £ BE| @& 3¢

= Bla A test 4

¥ (2 Examples [portTupel

&
A
4

Property Value

Id _F2420E78-EF16-FC40-1B9E-B29ATTASFESA

test

1/ Connecting zone

This zoneis composed by :

Thelogin nameis displayed before "connected as"

Full screen button : to reduce the green zone Orchestra on the top of the screen

Logout bouton : to return to the login window and change the current user

31

Designer User Guide

2/ Menu and toolbar

Menu
File/Edit : options to save/sel ect/undo/redo
Option

* Orchestraconnection : change the IMX URL and ObjectName used to connect with Orchestra server
(not mandatory to design a process but mandatory to deploy a process)

» Show view : Customize the Designer to show/hide window properties or micro-image.
Help : Version of the Orchestra Designer and Copyrights

Toolbar

e
S

o & B@% 0 |+ 3¢

Create a Folder (just one level of folder)

Create a process into afolder (this name must be unique by folder)

Save current edited process into the server

Save all opened process

Export the current edited process to bpel and wsdl (generate a BAR archive)
Deploy the generated BAR of the current edited process

Cut / Copy / Paste : Not implemented in this version

Zoom in/ Zoom out : Not implemented in this version

Undo/ redo

3/ Explorer

File explorer (Folder and processes)

e | B &

¥ | Examples

gg test

¥ | Projet
:& Loan

BPMN Palette with 3 BPMN elements (to be completed soon)

32

Designer User Guide

= B L&

G ateway

0
O Evert
B Task

» External Servicesexplorer : with the Add button you can choose from your local filesawsdl file which
describe your external service. Y ou can drag& drop this serviceinto process Editor to add aBPMN Pool.

EealFS Y T

wvalidatePT
inttPET
orderPT

portTypel

4/Process designer tab

For each BPMN 2.0 process, a diagram editor opens a hew tab.

In each diagram editor you can drag and drop BPMN elements from the BPMN palette.

Each BPMN element can be selected. When selected, a contextual menu appears around the element :
» On the top, the element can be renamed or removed.

» On theleft, the type of the BPMN element cna be changed.

» Ontheright, the element can be connected with another element.

Table7.1.

Qo
=@
@ evert O

event

&

OS>P

H@lep

33

Designer User Guide

5/Properties
This editor shows the properties of the current selected element.

Y ou can edit value of awritable property.

[Properties

Property Value

1d _CCE3CFBD-EE48-2E 7A-022C-B29A9BDABS28
Name task

Type service

Operation (Interface) operationl (portTypel]

Output Variable eventVar

Input XPath Expression getData0bjact(*avertyar)

Chapter 8. Advanced features

8.1. Monitoring and administration with JMX

Orchestra registers several MBeans which provide some monitoring information.

Orchestra APl is exposed as a JMX MBean (default objectName: Orchestra:type=RemoteAPl).
Orchestra APl isdetailed in Section 9.1, “Orchestra APIS".

Orchestra job and invoke executor thread pools can be managed
with JMX (default objectName: Orchestra:type=threadPool ,name=JobExecutor ~ and
Orchestra: type=threadPool ,name= I nvokeExecutor). Orchestra thread pool mbean is detailed in
Section 8.1.1, “Orchestra MBean for thread pools’.

Hibernate MBeans (default objectName: Orchestra:type=Hibernate,name=hibernate-session-
factory_coreand Orchestra: type= Hiber nate,name= hiber nate-session-factory_history). These MBeans
provide statistics about the Hibernate sessions. Refer to Hibernate documentation [http://docs.jboss.org/
hibernate/stabl e/core/reference/en/html/] for more information about the statistics.

C3P0 MBeans (default objectName: com.mchange.v2.¢3p0: type=PooledDataSource*). These MBeans
provide statistics about the Hibernate JDBC connection pool. Refer to C3P0 documentation
[http://www.mchange.com/projects/c3p0/index.html#mx_configuration_and management] for more
information.

Tomcat MBeans (default objectName: Catalina:*). These MBeans provide informations about
Tomcat. Refer to Tomcat documentation [http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-admin-
objects.html] for more information.

8.1.1. Orchestra MBean for thread pools

Available attributes:

ActiveCount : Number of threads currently executing atask.

CompletedTaskCount : Number of tasks completed.

CorePool Sze : Maximum number of threads of this pool. This attribute can be modified.
PoolSze : Current number of threads of this pool.

TaskCount : Number of tasks submitted to the thread pool. Thisincludes tasks already completed, tasks
currently being executed and tasks waiting for execution.

WaitingTaskCount : Number of tasks currently waiting for execution.

8.2. Clustering configuration

Orchestra can run in a clustered environment.

In aclustered environment, all Orchestra nodes share the same database.

When a process is deployed in Orchestra, the process web services are deployed on each node of the
cluster. An instance of the process can execute on any node of the cluster.

35

http://docs.jboss.org/hibernate/stable/core/reference/en/html/
http://docs.jboss.org/hibernate/stable/core/reference/en/html/
http://docs.jboss.org/hibernate/stable/core/reference/en/html/
http://www.mchange.com/projects/c3p0/index.html#jmx_configuration_and_management
http://www.mchange.com/projects/c3p0/index.html#jmx_configuration_and_management
http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-admin-objects.html
http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-admin-objects.html
http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-admin-objects.html

Advanced features

Im portant
In a clustered environment, reply activities are not supported. The web services exported by
Orchestra are only one-way web services.

In this version, Orchestra cluster configuration is done by declaring the cluster nodes in the
environment.xml file.

To declare a cluster, add these lines to the environment-factory part of the configuration file:

<static-cluster>
<j nx-server serviceUl="..." objectName="..." />
<j nx-server serviceUl="..." objectName="..." />

</static-cluster>

Each jmx-server element describes an Orchestra node. The serviceUr| and objectName attributes are the
parameters to use to connect to the IMX interface of the node. These values are configured for each node
in the orchestra.propertiesfile.

8.3. Using Apache Camel with Orchestra

8.3.1.

8.3.2.

When using Orchestra with CXF Web Service framework, Orchestra can use Apache Camel as transport
for web services interactions.

Orchestra-Camel integration allows processes to produce/consume messages on the Camel context. It
allows a process to use for example JIMS, mail, file connectors to connect to remote services.

For more information about Apache Camel features, please read Camel documentation [http://
camel.apache.org/user-guide.html]

How to create a Camel context for a process ?

Orchestrauses Camel Spring [http://camel .apache.org/spring.html] language to describe routes. To define
the Camel routes deployed with a process, add a camel-context.xml file in your BAR archive. Orchestra
will deploy and start the routes with the process. If your camel-context.xml uses external Java classes, you
can add them too to the BAR archive.

Example of camel-context.xml file:

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenaLocat i on="
http://ww. springframewor k. or g/ schema/ beans
ht t p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://canel . apache. or g/ schema/ spri ng
http://camel . apache. or g/ schema/ spri ng/ canel - spri ng. xsd" >
<canel Cont ext xml ns="http://canel.apache. org/schema/spring" autoStartup="fal se">
<rout e>
<fromuri="file:///inputbDir" />
<to uri="direct:hello"/>
</route>
</ canel Cont ext >

</ beans>

How to use camel context instead of HTTP for Web

Service interactions ?

In the WSDL file of the service you want to invoke or expose in the camel context,

« changeto transport defined in the SOAP binding element to http://cxf.apache.org/transports/camel

36

http://camel.apache.org/user-guide.html
http://camel.apache.org/user-guide.html
http://camel.apache.org/user-guide.html
http://camel.apache.org/spring.html
http://camel.apache.org/spring.html

Advanced features

 change the location of the service defined in the SOAP address element to camel://camel_endpoint
(where camel_endpoint is the endpoint you want to expose/invoke in the camel context)

Example of WSDL Service configured to use Camel:

<wsdl : bi ndi ng name="hel | owor | dPTSOAPBi ndi ng" type="tns: hel | owor| dPT" >
<soap: bi ndi ng styl e="docunment” transport="http://cxf.apache.org/transports/canel"/>
<wsdl : operati on name="submt">
<soap: operati on soapAction="http://orchestra.ow2.org/ hell oworl d/ submi t"/>
<wsdl : i nput >
<soap: body use="literal" />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal "/>
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : bi ndi ng>

<wsdl : servi ce name="hel | owor| dService">
<wsdl : port name="hel | owor| dPort" bi ndi ng="tns: hel | owor | dPTSQAPBi ndi ng" >
<soap: address | ocation="canel ://direct:hello"/>
</ wsdl : port>

</ wsdl : service>

8.4. Process versioning with Orchestra

8.4.1.

8.4.2.

Since Orchestra 4.6, versioning of process is supported.

Thisfeature eases deployment of new versions of aprocessin an environment with long-running instances.

Process versions

To deploy a new version of a process, just deploy a new process with the same name and namespace as
an aready deployed process. The version is automatically incremented.

Only one version of a process can be active. If multiple versions are deployed:

» when aversion becomes active, the previously active version becomesretired.

In the SOA console you can set a process version as active by clicking on the % button in the process
view

» when the active version is undeployed, the highest retired version becomes active.

In the SOA console you can set aprocess version asretired by clicking on the W button in the process
view

» when anew version is deployed, it becomes automatically active.

Restrictions on versioning

There are some restrictions when changing the process web services between process versions.

If aweb service is shared by two versions of a process (same endpoint address), it must have the same
WSDL definition (same portType, same binding...) in the two versions.

A new version of a process can add/remove web services (if receive activities are added, removed), as
long as they use a separate portType.

37

Advanced features

A web service cannot be shared by two different processes (processes with different names).

38

Chapter 9. Developer's guide

This chapter describes how to start playing with Orchestra:

» How to develop asimple application by leveraging Orchestra APIs

9.1. Orchestra APIs
9.1.1. Getting started with Orchestra APIs

f I mportant
Starting with Orchestra 5.0 or g. ow2. or chest r a. f acade. Queri er Runt i neAPI
and org.ow2.orchestra.facade. Queri erDefinitionAPl were renamed
into respectively org. ow2. orchestra. facade. Quer yRunt i meAPI and
org. ow2. orchestra. facade. QueryDefiniti onAPI .

Actualy, four different APIs are available in Orchestra :

* QueryRuntimeAPI that gives runtime information about instances of process and activities.

* QueryDefinitionAPI that givesinformation of process definition.

» ManagementAPI that gives the possibility to manage Orchestra (deploy / undeploy processes, etc...)

* InstanceManagementAPI that gives the possibility to manage instances of process (suspend / resume /
exit process instance)

Y ou can find detailed information about APIsin the javadocs. APIs areincluded in aMaven module. To
include this module you have to add following Maven dependency :

<dependency>
<groupl d>or g. ow2. or chest r a</ gr oupl d>
<artifactld>orchestra-api </artifactld>
<ver si on>4. 9. 0- M2</ ver si on>

</ dependency>

If you do not want / can't use Maven within your project, you can create a Maven module which depends
only on this dependency and create an assembly. Then copy created jar to your project.

» QueryRuntimeAPI: to get recorded/runtime informations for instances and activities. It allows also to
get activities per state. Then operationsin this APl applies to process instances and activity instances.

Hereafter you will find an example on how to accessto the QueryRuntimeAPI from your client application:

org. ow2. or chestra. facade. Quer yRunti meAPl queryRunti meAPl =
org. ow2. orchestra. facade. Accessor Uil . get QueryRunti meAPI (String, String);

The method getQueryRuntimeAP! takes two arguments of type String. The first argument is the URL of
the IMX service. The second isthe name of the object IMX. In case we use the default configuration, two
constants can be used which are: AccessorUtil.SERVICE_URL and AccessorUtil.OBJECT_NAME.

For adetailed insight on OrchestraAPIs, pleasetake alook to the Orchestrajavadoc APIs (available under /
javadoc directory)

39

Developer's guide

Similar methods exists to access to the QueryDefinitionAPl, ManagementAPlI and
I nstanceM anagementAPI.

9.2. Orchestra Client jar

If youwant to call OrchestraAPlsfrom aremote application you can usethe Orchestraclient jar. It contains
all the needed classesfor you to build you application. Just download thejar and includeit in your classpath.

9.3. Adding new Orchestra services
Implementations

Orchestra uses OSGi services to find extensions. To find services implementations, Orchestra use
org.ow2.orchestra.osgi.OrchestraExtensionService services. These services simply return the classes to
usein orchestra.

To use your own implementation of a service, you need to package it in an OSGi bundle. The bundle
should export a org.ow2.orchestra.osgi.OrchestraExtensionService service. The implementation of the
method getExtension(className) should return the extension class when the className is the name of
the extension, null otherwise.

org.ow2.orchestra.osgi.ExtensionActivator class provides a base for registering extensions. See javadoc
for more details on how to use this class.

40

