Sync4|

Native SyncClient API 1.1

Programming Guide

Syncé;j
http://www.sync4j.org

Table of Contents

O 1= YT R 3
1.1. SyncClient API ArChiteCIUrE........o.eiiic e e e 3
1.2. SYNChroNization OVEIVIEW...........oiiiiiiii ittt ettt e e enree e 4
1.3. Sync4j SyncClient API LICENSING......c.iuiiiiiiie ettt 5
1.4. Notes and CONVENTIONS.oiiiiiiiiie e e sttt e e e e ettt e e e e e e s e nnnnaeeeeeeeannes 5
2. Data Synchronization APL......... ...t e e e e e e e e e aaa e e e e 6
N T I TS o Tl Y F= o =T 1Y PP SRR 7
2.1.1. Configuring the SYNC Manager...........uuiiiiiiiiiiiie e e e s reee e e e 8
2.2, SYNCMaANAGEIFACIONY...... ettt e e e e e s bt e e e e e s aanbbbeeeaaeesasnneeeaeeeannne 9
B TSV oS To T B o= T SRS PUPRR 9
SV T 1 Y o PP 11
2 T o] o[T PP URRPPN: 12
P IS Y 1o To 10 o= 07 o] o T A SRR 13
2.7. SPDS EITOr COUES.eeiiiitiee ittt ettt ettt ettt e et e e et e e s bt e e et e e enre e e s anreee s 14
2.8, SYNC MOAES...... ettt e e e e e ettt et e e e s e e bbbt e e e e e e e e e et e e e e e e e nrraeeeaeeann 14
2.9. SPDS CONSIANTS. ...ttt 14
3. Device Management AP L. ... aaaaaaaaaas 16
3.1, The DEVICE MANAGET.......ciii ittt e e e e e e e e e e s e e e e e s s sas b eeeeaeessnnnaeeeeesannnseeeens 16
3.2, DeviceManagerFaCOry........uuuii i e e e e e s a e e e nnaraeaeeeaane 17
B TR T B 1= Tt =YV F= o =T [RSP 17
3.4. ManagemENtNOGE. ... i e e e s e e e e e s e e e e s e b r e e e e e e e nnaeeeeeeeannne 17
3.5. SPDM Concrete Implementations...........oooiiiiiee i e e e e e e nne 18
3.6. SPDIM EITOF COUES.cciiitiiieiiiie ettt ettt ettt e et e e sb et e s aa e e e e aaneeeennneeeean 18
3.7. SPDIM CONSLANES.ciiiuiiiiiiiiiie ittt e s a e e e b e e e ab e n e 18
BT T =T 4T] PR SUPPSPRS 18
3.8.1. Getting a DeviceManager INSTANCE.couuiiiiiiiiiiee e 18
3.8.2. Getting @ ManagemeEnt TrEE......c..oii it e e e e e e e e e e e s snnnreeeeas 18
3.8.3. Reading Management Node Configurable Properties..........ccocvviiieeiiiiiiiieiie e 19
3.8.4. Reading NOde ChildreN..........coiiiiiiiiiiiee et e e e e e e e s et ree e e e e e s s nnneaeeeee s 19
3.8.5. Update Configurable Properties...........cuuiiiiiiiiiiiiiiiiee ettt 19
I 113 v= 1| F= T TR PR PRSPPI 20
5. Developing a Test Application for Pocket PC 2002-2003...........c.ccooiiiiieeiiiiiee e e eiiiee e 21
L0t I 1= 0 B o o SRR 21
5.2, CoNfiQUration PrOPEITIES.ueiieiieiiiiieiie e s ittt e e ettt e e e e s st e e e e e e s eeeeeaeesssastreeeeeeessnnnneeeeeeeannes 24
Lo I = 101 o [{aTo JF=Ta T N oW a1 o SRR 25
6. Sync4j SyncClient APl LICENSING.......ccuuiiiiiiiiie ettt ee e e sree e e e e nree e e e s 31
6.1. Copyrights and Licenses Used by FUN@mMDOL.............ccoouriiiiiiiiii e 31
6.2. Using the Sync4j SyncClient API Software Under a Commercial License..........cccccccccvvvveeeeiinns 31
6.3. Using the Sync4j SyncClient API Software for Free Under GPL...........cccccceeei i, 32

1. Overview

The Sync4j Native SyncClient API is a C++ programming API by the mean application
developers can interact with the Sync4j platform in order to take advantage of its powerful data
synchronization features.

This document explains, from a developer point of view, the architecture and the use of the
Sync4j Native SyncClient API 1.1.

1.1. SyncClient API Architecture

The SyncClient API is built up of two main modules: data synchronization and device
management; they are layered as shown in Figure 1, where the device management layer is
responsible for device and application configuration management and the data synchronization
layer is responsible for everything regarding the SyncML protocol and the data synchronization
process.

Device Manager

Figure 1 - SyncClient API architecture

The application can access the services provided by both modules: the Sync Manager to
perform synchronization actions and the Device Manager to read, manipulate and write
configuration data. In addition, the Device Manager is intended to store application
configuration information, enabling the application to be transparently managed remotely with
the SyncML Device Management features that will be implemented in a next release of the
API.

A Sync Source is an application module used by Sync Manager to interact with the application
data sources. The way the Sync Source access the external data source is application specific
and transparent to the synchronization engine.

1.2. Synchronization Overview

The client application interacts with two objects of the SyncClient API for C/C++: the
SyncManager and the SyncSource. The SyncManager is the component that handles all the
communication and protocol stuffs. It hides the complexity of the synchronization process
providing few simple methods to deal with. The SyncSource represents the collection of items
that are exchanged between client and server. The client feeds a SyncSource with the items
changed on the client side, whilst the SyncManager feeds it with the items received by the
server.

The interaction between the three entities Client, SyncManager and SyncSource is depicted in
Figure 2.

Client SyncManager SyncSource

source = new SyncSource(syncName, syncMode, ...) -

prepareSync(source) >

getSyncMode() -
setAll/New/Updated/Deletedltems(...) >
sync(source) -

items = getNew/Updated/Deletedltems() >
setLUIDGUIDMapping(...) -

endSync(source) -

Figure 2 - Client-SyncClient API interaction diagram

First of all the client application tells the SyncManager to prepare the synchronization of a
specific server database (identified by a newly create SyncSource). This starts a new
synchronization session where the SyncManager negotiates with the server which type of
synchronization should be performed (one-way, two-way, slow, etc). After this initialization
process, the type of the synchronization that is going to be executed is known, so that the client
can feed the sync source with the relevant items (usually using setAlltems() in case of a slow
sync and the other setXXXltems() methods in case of one of fast sync).

Now, the SyncSource and the SyncManager are ready to perform the sync. The only thing the
client has to do is to call sync(). When the method returns, if the sync process was successfully
terminated, the client can read the items received from the server calling the getXXXIltems()
methods of the SyncSource object.

In the case the client creates its own LUID for new items, it can set the LUID-GUID mapping
back to the SyncSource so that at the end of the synchronization process (which is fired by the
endSync() method), the mapping is sent to the server. This step is optional.

1.3. Syncdj SyncClient API Licensing
Sync4j SyncClient API licensing options include:

- The Commercial License, which allows you to provide commercial software licenses to your
customers or distribute applications based on The Sync4j SyncClient API within your
organization. This is for organizations that do not want to release the source code for their
applications as open source/free software; in other words they do not want to comply with
the GNUGeneral Public License (GPL).

« For those developing open source applications, the Open Source License allows you to offer
your software under an open source/free software license to all who wish to use, modify,
and distribute it freely. The Open Source License allows you to use the software at no
charge under the condition that if you use the Sync4j SyncClient API in an application you
redistribute, the complete source code for your application must be available and freely
redistributable under reasonable conditions.

In their simplest form, the following are general licensing guidelines:

 If your software is licensed under either the GPL-compatible Free Software License as
defined by the Free Software Foundation or approved by OSlI, then use our GPL licensed
version.

- If you distribute a proprietary application in any way, and you are not licensing and
distributing your source code under GPL, you need to purchase a commercial license of the
Sync4j SyncClient API

- If you are unsure, we recommend that you buy our cost effective commercial licenses. That
is the safest solution. Licensing questions can be directed to license@sync4j.org for our
advice, and we encourage you to refer to the Free Software Foundation or a lawyer as
appropriate.

Commercially licensed customers get commercially supported product with assurances from
Funambol. Commercially licensed users are also free from the requirement of making their own
application open source.

For OEM's, ISVs, corporate, and government users, a commercial license is the proper solution
because it provides you with assurance from the vendor and releases you from the strict
requirements of the GPL license.

Nevertheless, you can test Sync4j SyncClient APl under the GPL license and inspect the
source code before you purchase a commercial non-GPL license.

For more information about Sync4j SyncClient API license, please refer to Chapter 6 of this
manual.

1.4. Notes and Conventions
The following notes and conventions do apply in this document:

« Wherever a char, char* or char[] type is specified in the API, it is intended to be a wide char
or a char depending on the default for the platform where the API is used. These are:
« Win32: wchar_t
« PPC: wchar _t

2. Data Synchronization API

This section describes in more details the classes of the Data Synchronization API, which are

shown in Figure 3 and Figure 4.

SyncManager

SyncSource

+ SyncManager(Config& config)

+ int prepareSync(SyncSource source)
+ int sync(SyncSource source)

+ int endSync(SyncSource source)

Syncltem

+ Syncltem(char* key)

+ getKey(char* key)

+ setKey(char* key)

+ setModificationTime(long timestamp)
+ long getModificationTime()

+ setData(void* data, long size)

+ void* getData()

+ long getDatalLength()

+ setDataType(char* type)

+ getDataType(char type[], int n)

+ SyncSource(char* name)

+ setPreferredSyncMode(int syncMode)

+ int getSyncMode()

+ long getLastSync()

+ setAllSyncltems(Syncltem items]], int n)

+ setDeletedSyncltems(Syncltem items[], int n)
+ setNewSyncltems(Syncltem items][], int n)

+ setUpdatedSyncltems(Syncltem items][], int n)
+ setLUIDGUIDMapping(SyncMap mappings, int n)
+ Syncltem** getAllSyncltems()

+ int getAllSyncltemsCount()

+ Syncltem** getNewSyncltems()

+ int getNewSyncltemsCount()

+ Syncltem** getDeletedSyncltems()

+ int getDeletedSyncltemsCount()

+ Syncltem** getUpdatedSyncltems()

+ int getUpdatedSyncltemsCount()

+ int getMapSize()

+ SyncMap** getLUIDGUIDMapping()

SyncManagerFactory

+ SyncManagerFactory()
+ getSyncManager(char* appURI)

SyncMap

+ SyncMap(char *luid, char*guid)
+ getLUID(char *luid)
+ getGUID(char *guid)

Figure 3 - SPDS classes (1)

SyncSourceConfig Config
+ SyncSourceConfig() + Config()
+ setName(char* name) + setlnitialUrl(char* url)
+ char* getName(char* name) + getlnitialUrl(char* url, int n)
+ setURI(char* uri) + setCredentials(char* credentials)
+ char* getURI(char* uri) + getCredentials(char* credentials, int n)
+ setSyncModes(char* syncModes) + SyncSourceConfig&
+ char* getSyncModes(char* syncModes) getSyncSourceConfig(int pos)
+ setType(char* type) + setSyncSourceConunt(int n)
+ char* getType(char* type) + int getSyncSourceCount()
+ setSync(char* syncMode) + setLastSync(long timestamp)
+ char* getSync(char* syncMode) + long getlLastSync()
+ setDir(char* dir) + SyncSourceConfig&
+ char* getDir(char* dir) getSyncSourceConfig(int pos)
+ setLast(long timestamp) + BOOL getSyncSourceConfig(char* name,
+ long getLast() SyncSourceConfig& sc)
+ BOOL isDirty() + BOOL setSyncSourceConfig(char* name,
SyncSourceConfig& sc)
+ BOOL readFromDM()
+ BOOL saveToDM()
+ BOOL isDirty()
+ BOOL getCheckConn();
+ void setCheckConn(BOOL checkConn);

+ unsigned int getResponseTimeout();

+ void setResponseTimeout(unsigned int respons’eTirr

Figure 4 - SPDS classes (2)

2.1. The Sync Manager

SyncManager is the contact point between an application and the synchronization engine. It is
designed to hide as much as possible to the developer the details of the synchronization logic,
protocol and communication.

The way to work with the SyncManager is as follows (see Figure 2):

« Get a SyncManager instance.

- Create a SyncSource representing the server database to synchronize.
« Call prepareSync() in order to start the synchronization process.

 Fill the SyncSource with the client-side modified items.

« Call sync().

« Get the server-side modifications and apply them to the local database.
- Set the source LUID-GUID mapping.

« Call endSync().

Here is a code snippet of how the above sequence can be implemented:

SyncManagerFactory factory = SyncManagerFactory();
SyncManager* syncManager = factory.getSyncManager (APPLICATION URI) ;
SyncSource source = SyncSource (SOURCE NAME) ;

if (syncManager == NULL) {
error () ;
goto finally;

}

ret = syncManager->prepareSync (source) ;

if (ret != 0) {
// error handling

}

switch (source.getSyncMode()) {
case SYNC_SLOW:

setAllItems (source); // fill the allltems source property
break;

case SYNC_TWO_WAY:
setModifiedItems (source) ; // set the client-side modified items
break;

default:
break;

}

if (syncManager->sync (source) != 0) {
error();
goto finally;

}

// Now source contains server-side modifications

// ... Do whatever appropriate ...
setMappings (source); // set LUID-GUID mapping
if (syncManager->endSync (source) != 0) {

error () ;
goto finally;

Method

SyncManager() Constructor

int prepareSync(SyncSource& source) |nitializes a new synchronization session for the specified
sync source. It returns 0 in case of success, an error code in
case of error (see SPDS Error Codes).

int sync(SyncSource& source) Synchronizes the specified source with the server. source
should be filled with the client-side modified items. At the
end of the process source will be fed with the items sent by
the server. It returns 0 in case of success or an error code in
case of error (see SPDS Error Codes).

int endSync(SyncSource& source) Ends the synchronization of the specified source. If source
contains LUIG-GUID mapping this is sent to the server. It
returns 0 in case of success or an error code in case of error
(see SPDS Error Codes).

2.1.1. Configuring the Sync Manager

Sync Manager requires few configuration parameters such as the url of the SyncML server,
which Sync Sources can be synchronized and so on. This information is stored in the device
manager layer (see Device Management API). Configuration parameters are grouped by so
called configuration contexts and organized in a management tree.

Please refer to the Deveice Management API section for details on how configuration
information are stored on each platform.

Sync Manager requires the following configuration parameters (grouped by context):

<application uri>/spds/syncml
begin Timestamp of the beginning of the last synchronization
deviceld Device identifier

Property

end Timestamp of the end of the last synchronization
password Principal's credential

firstTimeSyncMode Reserved

password The user's password

proxyHost Reserved

proxyPort Reserved

serverName The server uri used to address the sync server
syncUrl Synchronization url

useProxy Reserved

username The user's account nickname

responseTimeout The max time to wait for a server response. If 0 the

default value is taken (300 seconds)
checkConn If 1 uses the class to establish a internet connection
<application uri>/spds/sources/<source name>
last The timestamp of the last synchronization
name Source display name

sync The default sync mode to be used for the source; one
of:

* none

« slow

+ two-way
- one-way
- refresh

syncModes Comma separated list of supported sync modes (e.g.:
none, slow, two-way)

type Source type (e.g. text/plain, text/vcard, ...)

Note that under the <application uri>/spds/sources context can be put as many sources as
needed.

2.2. SyncManagerFactory

This is the factory for SyncManager objects. Use its getSyncManager() method to get a new
configured instance of SyncManager.

Method

SyncManagerFactory() Constructor.

SyncManager* getSyncManager(char* | Creates and initializes a new SyncManager instance. The
appURI) creation process includes the reading of the relevant
configuration information from the device manager layer.

2.3. SyncSource

This is the class that represents a synchronization data source. Its must be filled with the client-
side items before passing it to the SyncManager in order to synchronize it. After the
SyncManager has finished a sync(), the SyncSource object contains the server-side items.
Iltems are stored as arrays of Syncltem objects.

Method

SyncSource(char name)

Constructs a SyncSource with the given name.
The name is used to retrieve the source
configuration from the
<appURI>/spds/sources/ configuration
context.

char* getName(char* name, int dim)

setType(char* type)
char * getType(char *type)

setPreferredSyncMode(SyncMode syncMode)

getPreferredSyncMode()
SyncMode getSyncMode()

setSyncMode(SyncMode syncMode)

long getLastSync()

setLastSync(long timestamp)

setLastAnchor(char* last)

char* getLastAnchor(char* last)

setNextAnchor(char* next)

Returns the source name. If sourceName is <>
NULL, the source name is copied in it. If
sourceName is <> NULL the returned value is
sourceName. Otherwise, the returned value is the
internal buffer pointer. Note that this will be
released at object automatic destruction.

Sets the items data mime type

Returns the items data mime type. If type is
NULL, the pointer to the internal buffer is returned,
otherwise the value is copied in the given buffer,
which is also returned to the caller.

Sets the synchronization mode required for the
SyncSource. It can be one of the values of the
enumeration type SyncMode.

Returns the default synchronization mode.

Returns the synchronization mode for the
SyncSource. It may be different from the one set
with setPreferredSyncMode() as the result of the
negotiation with the server.

Sets the synchronization mode for the
SyncSource.

Returns the timestamp in milliseconds of the last
synchronization. The reference time of the
timestamp is platform specific.

Sets the timestamp in millisencods of the last
synchronization. The reference time of the
timestamp is platform specific.

Sets the last anchor associated to the source

Gets the last anchor associated to the source. If
last is NULL the internal buffer address is
returned, otherwise the value is copied in the
given buffer and the buffer address is returned.

Sets the next anchor associated to the source

10

Method

char* getNextAnchor(char* next)

setAllISyncltems(Syncltem* items][], int n)

Gets the next anchor associated to the source. If
next is NULL the internal buffer address is
returned, otherwise the value is copied in the
given buffer and the buffer address is returned.

Sets all the items stored in the data source. For
performance reasons, this should only be set
when required (for example in case of slow or
refresh sync). The items are passed to the
SyncSource as an array of Syncltem objects.

setDeletedSyncltems(Syncltem* items[], int n)

setNewSyncltems(Syncltem* items[], int n)

Sets the items deleted after the last
synchronization. The items are passed to the
SyncSource as an array of Syncltem objects.

Sets the items created after the last
synchronization. The items are passed to the
SyncSource as an array of Syncltem objects.

setUpdatedSyncltems(Syncltem* items][], int n)

setLUIDGUIDMapping(SyncMap* mappings[], int n)

SyncMap** getLUIDGUIDMapping()

int getMapSize()
Syncltem** getAllSyncltems()
int getAllSyncltemsCount()

Syncltem** getNewSyncltems()

Sets the items updated after the last
synchronization. The items are passed to the
SyncSource as an array of Syncltem objects.

Sets the LUID-GUID mapping of the last
synchronization.

Returns the LUID-GUID mappings.

How many mappings.

Returns the all items buffer.

How many items in the all items buffer.
Returns the new items buffer.

int getNewSyncltemsCount()
Syncltem** getDeletedSyncltems()
int getDeletedSyncltemsCount()
Syncltem** getUpdatedSyncltems()
int getUpdatedSyncltemsCount()

How many items in the new items buffer.
Returns the deleted items buffer.

How many items in the deleted items buffer.
Returns the updated items buffer.

How many items in the updated items buffer.

2.4. Syncltem

An item is represented by a Syncltem, who associates an identifying key with the item content.

Method

Syncltem(char* key)

Constructs a new Syncltem identified by the given key. The

key must not be longer than DIM_KEY (see SPDS
Constants).

char* getKey(char* key)

Returns the Syncltem's key. If key is NULL, the internal

buffer is returned; if key is not NULL, the value is copied in
the caller allocated buffer and the given buffer pointer is

returned.

11

Method

setKey(char* key) Changes the Syncltem's key. The key must not be longer
than DIM_KEY (see SPDS Constants).

setModificationTime(long timestamp) Sets the Syncltem's modification timestamp. timestamp is a
milliseconds timestamp since a reference time (which is
platform specific).

long getModificationTime() Returns the Syncltem's modeification timestamp. The
returned value is a milliseconds timestamp since a reference
time (which is platform specific).

setData(void* data, long size) Sets the Syncltem's content data. The passed data are
copied into an internal buffer so that the caller can release
its buffer after calling setData().

NOTE: in the current implementation data MUST point to a
zero terminated string.

void* getData() Returns the Syncltem's data buffer.

long getDataSize() Returns the Syncltem's data size.
setDataType(char* type) Sets the Syncltem's data mime type
getDataType(char *type, int n) Returns the Syncltem's data mime type.

2.5. Config

This class represents the entire SyncManager configuration. It groups utility methods to easily
access configuration properties.

Method

Config() Constructs a new Config object

setlnitialUrl(char* url) Sets the initial url to which the server responds

getlnitialUrl(char* url, int n) Returns the configured initial url to which the server
responds

setCredentials(char* credentials) Sets the credentials to send along with the request

getCredentials(char* credentials, int n) Returns the configured credentials

SyncSourceConfig* getSyncSourceConfig() Returns the SyncSource configuration objects

void setSyncSourceCount(int n) Set the number of the valid SyncSource configuration
objects

int getSyncSourceCount() Returns the number of valid SyncSource

configuration objects

setlLastSync(long timestamp) Sets the last sync timestamp (the last time the
SyncManager was run).

long getLastSync() Returns the last sync timestamp (the last time the
SyncManager was run).

SyncSourceConfig& getSyncSourceConfig(int Returns the pos-th sync source configuration.
pos);

12

Method

BOOL getSyncSourceConfig(const wchar_t* Returns a sync source configuration given the source

name, SyncSourceConfig& sc); name.

BOOL setSyncSurceConfig(SyncSourceConfig& | Sets a sync source configuration given the source

sc) name and the SyncSourceConfig object.

BOOL readFromDM() Reads the configuration from the device manager.

BOOL saveToDM() Saves the configuration to the device manager.

BOOL isDirty() Is the dirty flag set?

BOOL getCheckConn(); Get the flag checkConn to test if the class to establis;j
connection has to be used

void setCheckConn(BOOL checkConn); Set the checkConn flag

Unsigned int getResponseTimeout(); Get the max time to wait for a server response

void setResponseTimeout(unsigned int Set the max time to wait for a server response

responseTimeout);

2.6. SyncSourceConfig

Similar to Config but for SyncSources.

SyncSourceConfig() Constructs a new SyncSourceConfig object
setName(char* name) Sets the SyncSource name
char* getName(char* name) Returns the SyncSource name. If name is null, the internal

buffer is returned, otherwise the value is copied into the
given buffer (that must be DIM_SOURCE_NAME big).

setURI(char* uri) Sets the SyncSource URI (used in SyncML addressing).

char* getURI(char* uri) Returns the SyncSource URI (used in SyncML addressing).
If uri is null, the internal buffer is returned, otherwise the
value is copied into the given buffer (that must be
DIM_SOURCE_URI big).

setSyncModes(char* syncModes) Sets the available syncModes for the SyncSource as comma
separated values. Each value must be one of:

* none
+ slow

+ two-way
e oOne-way
« refresh

char* getSyncModes(char* syncModes) Returns a comma separated list of the supported syncModes
for the SyncSource. If syncModes is null, the internal buffer
is returned, otherwise the value is copied into the given
buffer (that must be DIM_SYNC_MODES_LIST big).

setType(char* type) Sets the mime type of the items handled by the sync source.

13

Method

char* getType(char* type) Returns the mime type of the items handled by the sync
source. If type is null, the internal buffer is returned,
otherwise the value is copied into the given buffer (that must
be DIM_SYNC_MIME_TYPE big).

setSync(char* syncMode) Sets the default syncMode as one of the strings above.

char* getSync(char* syncMode) Returns the default syncMode as one of the strings above. If
type is null, the internal buffer is returned, otherwise the
value is copied into the given buffer (that must be
DIM_SYNC_MODE big).

setDir(char* dir) Set a dir parameter that can be useful

char* getDir(char* dir) Returns the dir parameter value. If dir is null, the internal
buffer is returned, otherwise the value is copied into the
given buffer (that must be DIM_DIR big).

setLast(long timestamp) Sets the last sync timestamp

long getLast() Returns the last sync timestamp

2.7. SPDS Error Codes

_______Mnemonic___WValuel] _________ Description __

ERR_CONN_UNABLE_CONNECT 100 It was not possible to connect to the server

ERR_PROTOCOL 400 Protocol error

ERR_AUTH_NOT_AUTHORIZED 401 | The user is not authorized to perform the
requested sync

ERR_AUTH_EXPIRED 402 | An existing account has expired

ERR_SRV_FAULT 500 | The server reported an error

ERR_SOURCE_DEFINITION_NOT_FOUND = 600 | The source definition for a source is not found in
the DM management tree

ERR_REPRESENTATION 700 | Error parsing/interpreting a SyncML message

2.8. Sync Modes

SYNC_TWO_WAY 200 Two way sync

SYNC_SLOW 201 | Two way slow sync
SYNC_ONE_WAY_FROM_CLIENT 202 | One way sync from client
SYNC_REFRESH_FROM_CLIENT 203 Refresh sync from client
SYNC_ONE_WAY_FROM_SERVER 204 One way sync from server
SYNC_REFRESH_FROM_SERVER 205 Refresh sync from server
SYNC_TWO_WAY_BY_SERVER 206 | Two way server alerted sync

14

Mnemonic Value Description

SYNC_ONE_WAY_FROM_CLIENT_BY_SERVER 207 One way server alerted sync from client

SYNC_REFRESH_FROM_CLIENT_BY_SERVER 208 Refresh server alerted sync from client
SYNC_ONE_WAY_FROM_SERVER BY_SERVER | 209 | One way server alerted sync from server
SYNC_REFRESG_FROM_SERVER BY_SERVER 210 | Refresh server alerted sync from server

2.9. SPDS Constants

DIM_ANCHOR 32 Max length of a synchronization anchor

DIM_DEVICE_ID 50 Max length of a device id

DIM_HOST 50 Max length of an host name

DIM_KEY 256 Max length of a Syncltem key

DIM_MANAGEMENT_PATH 512 Max length of a management path

DIM_MIME_TYPE 32 Max length of a mime type

DIM_PASSWORD 100 Max length of a password

DIM_SERVERNAME 100 Max length of a server name

DIM_DIR 256 Max length of a dir

DIM_SOURCE_NAME 128 Max length for a source name

DIM_SOURCE_URI 64 Max length for a source URI

DIM_SYNC_MODE 16 Max length of a sync mode

DIM_SYNC_MODES_LIST 64 Max length of a comma separated list of
the available sync modes

DIM_URL 2048 Max length of a url

DIM_USERNAME 100 Max length of a usernam

DIM_KEY_SYNC_ITEM_STATUS 64 Max length of key of SyncltemStatus

DIM_COMMAND_SYNC_ITEM_STATUS 128 Max length of a sync command

15

3. Device Management API

Goal of the device management layer is to allow an easy management of a remote device,
usually by remote administration or help-desk staff. This means that a remote or local agent
can navigate, view and change device and applications configuration in a manner transparent
to the end user.

Configuration information is logically stored in a so called management tree, organized in a
hierarchy of contexts and management nodes. This hides the details of the physical
configuration storage that could be an SQL database, a device datastore, an XML file, a file
system tree or even the device memory.

NOTE: the current version of the Funamambol SyncClient API does not support remote device
management yet. This functionality will be added in a future release.

DeviceManagerFactory ManagementNode
+ DeviceManagerFactory() + ManagementNode(char* context, char*name)
+ DeviceManager &getDeviceManager() + getPropertyValue(char* property, char* value, int n)

+ setPropertyValue(char* property, char* value)

+ getChildren(ManagementNode* children, int* size)
+ getChildrenCount()

+ ManagementNode getChild(char *node)

+ getFullName(char* node, int size)

DeviceManager

+ DeviceManager()

+ ManagementNode
&getRootManagementNode()

+ ManagementNode
&getManagementNode(char* node)

+ int getLastError()

+ getLastErrorMessage(char* msg, int n)

Figure 5 - SPDM classes

3.1. The Device Manager

The classes of the Device Management API are shown in Figure 5. The entrypoint is
represented by the DeviceManagerFactory who acts as a factory for concrete implementations.
In addition, concrete DeviceManager implementations can return the management tree root
relative to a base configuration context. The management tree is represented by a hierarchical

16

structure of ManagementNode objects. ManagementNode provides accessing methods for the
manageable properties stored in the node and additional methods to retrieve children nodes
and values. Children and parent nodes can also be accessed through the given utility methods.

The physical implementation of the management tree repository may vary from simple
properties files stored on a file system to configuration tables stored in a database.

3.2. DeviceManagerFactory

This class is simply a factory for DeviceManager concrete implementations. It is platform
specific so that it returns a concrete DeviceManager implementation for the target platform.

Method Description
DeviceManagerFactory() Constructor.
DeviceManager getDeviveManager() Creates and returns a new DeviceManager. The

DeviceManager object is created with the new operator and
must be deleted by the caller with the operator delete.

3.3. DeviceManager

This is an abstract class that defines the interface of a device manager object so that the caller

can use a generic “DeviceManager” without the need to know platform and implementation
specific details.

Method
DeviceManager() Constructor
ManagementNode* Returns the root management node for the

getRootManagementNode() DeviceManager

ManagementNode* getManagementNode | Returns the management node identified by the given node
(char* node) pathname (relative to the root management node). If the
node is not found NULL is returned.

3.4. ManagementNode

This is another abstract class that acts as an interface for concrete implementations. A
management node associates a context path (such as

applications/app1/source/spds/sources/source1) to a set of properties. A property is a key-value
pair.

Method Description
ManagementNode(char* context, char* name) Constructor.

getPropertyValue(char* property, char* value, intn) Returns the value of the given property.

setPropertyValue(char* property, char* value) Sets the value of the given property.
getChildren(ManagementNode** children, int* size) Returns the children node of the ManagementNode.
getChildrenCount() Returns how many children belong to the node.
ManagementNode* getChild(char *node) Returns a child node of the ManagementNode.
getFullName(char *buf) Returns the full node name.

17

3.5. SPDM Concrete Implementations

As said before, the physical media where the device manager layer stores and reads

configuration contexts and properties is platform dependent. The class DeviceManagerFactory
creates DeviceManager objects suitable for the implementation used.

In details, the platform-media implementation table is the following:

Platform L Media____________________

Win32 Windows registry. The root context is relative to
HKEY_LOCAL_MACHINE\Software.

PocketPC 2002-2003-.NET PocketPC registry. The root context is relative to
HKEY_LOCAL_MACHINE\Software.

3.6. SPDM Error Codes

| Mnemonic |
ERR_INVALID_CONTEXT 10000 A specified context is invalid.

ERR_SOURCE_DEFINITION_NOT_FOUND 10001 The definition of the SyncSource was not

found.
3.7. SPDM Constants

DIM_MANAGEMENT_PATH 512 | Max length of a management path.

DIM_ERROR_MESSAGE 256 Max length of an error message.

DIM_PROPERTY_NAME 64 Max length of a property name.

3.8. Examples

3.8.1. Getting a DeviceManager Instance

#include "spdm/common/DeviceManager.h"
#include "spdm/common/DeviceManagerFactory.h"

DeviceManagerFactory factory DeviceManagerFactory () ;
DeviceManager* dm = factory.getDeviceManager () ;

3.8.2. Getting a Management Tree

#include "spdm/common/DeviceManager.h"
#include "spdm/common/DeviceManagerFactory.h"

DeviceManager* dm;
wchar t context[DIM MANAGEMENT PATH];

18

ManagementNode* node = dm->getManagementNode (L”/Sync4j/spdm”) ;

3.8.3. Reading Management Node Configurable Properties

DeviceManagerFactory factory = DeviceManagerFactory();
DeviceManager* dm = factory.getDeviceManager () ;

wsprintf (context, TEXT("%s/%$s"), rootContext, CONTEXT SPDS SYNCML) ;

ManagementNode* spdsConfig = dm->getManagementNode (context) ;

if (spdsConfig == NULL) {
lastErrorCode = ERR_INVALID CONTEXT;
wsprintf (lastErrorMsg, TEXT ("SyncManager configuration not found: %$s"), context);
goto finally;

}

wchar t buf[VALUESIZE]; // big enough for everything

//

// Reads the configuration from the management node and fill

// the config object. This will be passed to the SyncManager

// constructor

//

spdsConfig->getPropertyValue (PROPERTY USERNAME, buf, VALUESIZE);

3.8.4. Reading Node Children

int nc = node->getChildrenCount () ;
if (nc > 0) {
ManagementNode** children = new ManagementNode* [nc];

node->getChildren (children, &nc);

3.8.5. Update Configurable Properties

wchar t buf[DIM VALUE];
wsprintf (buf, TEXT("%s"), ... something here ...);
spdsConfig->setPropertyValue (PROPERTY SYNC BEGIN, buf);

19

4. Installation

The Sync4j Native SyncClient API is delivered as a zip archive named scapi-native-
<major>.<minor>.<build>.zip, where <major>, <minor> and <build> are, respectively, the
major, minor and build version numbers.

To install the API, just unzip the archive in a directory of choice. You will get the directory
structure of Figure 6.

= |2 fscapinative-1.0 A | |6 dient.cpp 9¥E C++ Source fie
) docs @m:mcm-:p 2¥B Project File
=) examples @.ﬁ;{ZDDE.x--:'.'. 1KB Project Warkspace
= |2 dummy
o g
= | ndude
= i) common
] Ppc
= I htip
| Common
J ptypes
= | spdm
{) common
=) spds
I} commaon
=N]
) arm-dbg
) arm-fe
) emu-dbg
) emu-rel W

Figure 6 - Native SyncClient API package structure

Here is the meaning of the main directories:

docs Documentation directory.
examples Sample programs.
include Header files directory.

lib

Library directory containing the libraries to be used
for the different devices and configurations.

20

5. Developing a Test Application for Pocket PC 2002-
2003

In this section, we are going to describe a test application from scratch. Our test application is a
C++ application, composed of the following files:

+ client.cpp: the main test application.
» The Sync4j SyncClient API lib files (scapippc2003.lib)
» The Sync4j SyncClient API header files (*.h)

You can find the example source files in the 'examples' directory of the SyncClient API
installation directory. The following sections explain the client application logic and the steps
needed to build and run it.

The software requirements to build and run the test application are:

- Sync4j Native SyncClient API 1.1
« Microsoft Embedded VC++ 3.0 (for Pocket PC 2002) or 4.0 (for Pocket PC 2003)

5.1. client.cpp

This is the C++ program that implements a very simple client based on the Sync4j SyncClient
APl

Scope of this client is to show the process of starting, carry on and completing a
synchronization session, displaying the exchanged modification on the screen (or on a log file);
no database will be physically updated.

Open client.cpp in your preferred editor and refer to the following annotated code for details.

First of all, there are some includes and definitions:

#include "common/fscapi.h"

#include "common/Log.h"

#include "spds/common/Config.h"

#include "spds/common/Utils.h"

#include "spds/common/Constants.h"

#include "spds/common/SyncMap.h"

#include "spds/common/SyncItem.h"

#include "spds/common/SyncManager.h"
#include "spds/common/SyncManagerFactory.h"

#define APPLICATION URI TEXT ("Syncé4j/examples/dummy")
#define MAP SIZE 10

#define ALL ITEMS_COUNT 4
#define DELETED_ITEMS COUNT 1

21

#define UPDATED ITEMS COUNT 2
#define NEW ITEMS COUNT 1

static SyncMap* mappings [MAP SIZE]
static SyncItem* newlItems [NEW _ITEMS COUNT]
static SyncItem* updatedItems [UPDATED ITEMS COUNT]
[]
[1

static SyncItem* deletedItems [DELETED ITEMS COUNT];
static SyncItem* allltems ALL ITEMS COUNT

7

One of the most important piece of code is the creation of the SyncManager object using
SyncManagerFactory. getSyncManager() creates a new SyncManager instance reading the
configuration information it requires from the device management layer. The base of the root
configuration context is specified giving the application URI:

SyncManagerFactory factory = SyncManagerFactory();
SyncManager* syncManager = factory.getSyncManager (APPLICATION URI) ;

When we have the SyncManager instance, we need something to tell it what we want to
synchronize and with which data. This is done by a SyncSource object.

SyncSource source = SyncSource (TEXT ("dummy")) ;

Please note that a sync source requires a bunch of configuration properties (see Configuring
the Sync Manager) that must be stored under the configuration context
Syncdj/examples/dummy/spds/sources/dummy (which corresponds to <application
URI>/spds/sources/<source name>).

To start a new synchronization session for the wanted SyncSource, we first prepare it:

ret = syncManager->prepareSync (source) ;

In this way, we send information about the server database to synchronize (it will be the one
whose URI corresponds to the sync source name), authentication credentials, required
synchronization mode and so on. If something goes wrong, the error code specified by the
server is returned and is processed accordingly:

if (ret !'= 0) {
switch (ret) {
case ERR PROTOCOL ERROR:
LOG.error (TEXT ("Protocol error"));
break;

case ERR AUTH NOT AUTHORIZED:

case ERR AUTH REQUIRED:
LOG.error (TEXT ("Not authorized"));
break;

case ERR AUTH EXPIRED:
LOG.error (TEXT ("Account expired; required payment"));
break;

case ERR SRV_FAULT:
LOG.error (TEXT ("Server error"));
break;

case ERR NOT FOUND:
wsprInthlogmsg, TEXT ("Server returned NOT FOUND for SyncSource %s"),
source.getName (NULL, 0));
LOG.error (logmsg) ;
break;

default:
error () ;

break;

}

goto finally;

22

}

If the initialization succeeded, the source object gets the server requested synchronization
mode. If it corresponds to a slow sync, we have to feed the SyncSource instance with all the
items of a hypothetic data store, otherwise we can feed the sync source with only the last
modifications.

switch (source.getSyncMode()) {
case SYNC SLOW:
setAllItems (source) ;
break;

case SYNC_TWO WAY:
setModifiedItems (source) ;
break;

default:
break;

}

setAllltems() and setModifiedltems() are utility procedures provided by the client application to
accomplish the feeding operation and are reported later on.

Please note that the server returned sync mode can be different from the sync source preferred
sync mode. This happens, for example when the client and the server cannot trust each other
state and a slow sync is imposed by the server.

We are now ready to synchronize the source.

if (syncManager->sync (source) != 0) {
error();
goto finally;

}

During this process, the client side modifications stored in source are sent to the server; if
everything goes well, the synchronization engine reads server-side modified items and stores
them, again, in source. At the end of the process, source contains the items sent by the server.

This simple application does not interact with a final database, so the only thing we do with the
received items is to display them on the screen:

displayItems (source) ;

Before finishing the process, we have to send the mapping between LUID and GUID to the
server. This is done setting the mappings in the source object:

setMappings (source) ;
We can now end the synchronization process.

if (syncManager->endSync (source) != 0) {
error () ;
goto finally;

The way the SyncSource object is filled is shown by the implementation o the following
procedures:

void setAllItems (SyncSourceé& s) {

allltems[0] = new SyncItem(TEXT ("iteml"));
allltems[1l] = new SyncItem(TEXT ("item2"));
allltems[2] = new SyncItem(TEXT ("item3"));
allltems[3] = new SyncItem(TEXT ("item4d"));

23

//

// NOTE: keep into account the terminator

//

alllItems[0]->setData (TEXT ("This is item One") , 17*sizeof (wchar t));
allItems([l]->setData (TEXT("This is item Two") , 17*sizeof (wchar t));
allltems[2]->setData (TEXT ("This is item Three"), 19*sizeof (wchar t));
allItems[3]->setData (TEXT ("This is item Four") , 18*sizeof (wchar t));

s.setAllSyncItems (alllItems, 4);
}

void setModifiedItems (SyncSource& s) |
newltems [0] new SyncItem (TEXT ("item4"));
deletedItems[0] new SyncItem (TEXT ("item5"));
updatedItems[0] new SyncItem (TEXT ("iteml"));
updatedItems|[1] new SyncItem (TEXT ("item3"))

7

newltems[0]->setData (TEXT ("This is a new item Four"), 24*sizeof (wchar t));
updatedItems[0]->setData (TEXT ("This is the updated item One"),29*sizeof (wchar t));
updatedItems[1l]->setData (TEXT ("This is the updated item Three"),31l*sizeof (wchar t));

s.setNewSyncItems (newItems, NEW_ITEMS_ COUNT) ;

s.setDeletedSyncItems (deletedItems, DELETED ITEMS COUNT) ;

s.setUpdatedSyncItems (updatedItems, UPDATED_ ITEMS COUNT) ;
}

void setMappings (SyncSourceé& s) {

//

// For the purpose of this example, LUIDs are created prepending
// the string "C - " to the GUIDs

//

unsigned int n;
wchar t luid[DIM KEY];
SyncItem** items;

n = s.getNewSyncItemsCount () ;

items = s.getNewSyncItems () ;

for (unsigned int i = 0; i<n; ++1i) {
wsprintf (luid, TEXT("C - %s"), items[i]->getKey(NULL));
mappings[i] = new SyncMap (items[i]->getKey (NULL), luid);

}

s.setLUIDGUIDMapping (mappings, n);

5.2. Configuration properties

On PocketPC devices, the device management module handles configuration information in
the PocketPC registry. Therefore, configuration contexts correspond to registry keys and
configuration properties to registry values.

Edit the device registry using the Remote Registry Editor available with Microsoft eMbedded
Visual C++ 4.0 (or any other registry editor) and create the keys and values shown in Figure 7
and Figure 8.

Note that the management tree starts at the HKEY_LOCALMACHINE\SOFTWARE key and the
application URI is Sync4j/examples/dummy.

24

£ Windows CE Remote Registry Editor

Registry Edit \iew Connection Help

=1o] x|

T ECEEEEEEEE

-0 MU || name | Data
L Ens) (Decaut) 'valuge not set)
| {3 Patform [BjeyncURL nttp://localhost: 8080/syncAj/sync
©E-E3 PMal [)servername ntp:/flocalnost:scsn
IE-ICI Security lablendTimestamp 0
I?H_'I o [)sourceCount]
[beginTimestamp 3
EID Sid _ [B)deviceld sc-zpi-nat
E'D SOEENORE [EJusenname guesl
. +0 apps () password Juest
. 23 Funambol EBresponseTimeolt 180
! - examplas [a] checkConn 1
i =33 durrmy
=3 spds
0 (13 scurces
00 cummy
 omm
73 Micrnsnft
{‘_—| SysLern 1]« | | _,I

£ Windows CE Remote Registry Editor
Registry Edit View Connection Help

[POCKET PC 2003 Emulator\HKEY LOCAL MACHINE\SOFTWARE\Funambol\examplesidur| v

Figure 7- SyncManager configuration

=o] x|

B 2o Bl B ¢ [B|@] 3 |||

-3 PMai | | name | Data
=3 Security [ab] (Default) (value not set)
-3 Services] name dummy
-1 Snd (8] fast 0
££3 SOFTWARE Bsync o
B8 Apps syncModes sbw,rtwq—wayﬂne—way,refresh
[aB]type text/plain
El{:’ Ftinbo) ab] yri Jdummy
=-1 examples
B0 dummy
= spds
=3 sources
= dummy
22 syncml
-] Microsoft
B0 System
&-(2 TAPI
&-13 Telephony ==
-1 Windows CE Services = b
Ready =i 4

Figure 8- SyncSource configuration

25

5.3. Building and Running

To compile and run the example, open the project file “ppc2003.vew” with Microsoft eMbedded
Visual C++ 4.0, choose “Win32 (WCE ARMV4) Release” active configuration and “POKET PC
2003 Device” default device. Now build the project (press F7).

The file “ppc2003.exe” will be generated and transferred to the device under the root file
system (\). Locate it in the File Explorer and run it.

Since a PocketPC application has no console, no output is immediately displayed. Instead, a
log file “sync.txt” is generated under the Pocket PC 2003 root.

Opening the log file you have something similar to the following:

INFO - Preparing sync...
INFO - Starting sync...
INFO - New items

INFO -
INFO - key: 1, data: BEGIN:VCARD

VERSION:2.1

N:John;Doe; ;;

TITLE:Marketing Director

EMAIL;WORK; PREF; INTERNET: jhon_doe@somewhere.com
TEL;WORK; PREF:+1 650 50504040

END:VCARD

INFO - Updated items
INFO - =============
INFO - Deleted items
INFO - =============
INFO - Mappings

INFO - ========

INFO - luid: C - 1, guid: 1
INFO - Ending sync...

INFO - Finalyzing...

INFO - Sync ended.

Choosing “Win32 (WCE ARMV4) Debug” as active configuration and repeating the steps
above, you can see a more verbose log; it will look like the following:

INFO - Preparing sync...

DEBUG - Initialization message:
DEBUG - <SyncML>
<SyncHdr>

<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>

<MsgID>1</MsgID>
<Target><LocURI>http://localhost:8080</LocURI></Target>
<Source><LocURI>sc-api-nat</LocURI></Source>
<Cred>

<Meta><Type xmlns='syncml:metinf'>syncml:auth-basic</Type></Meta>
<Data>Z3V1c306Z3V1c3Q0=</Data>

</Cred>

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>201</Data>

<Item>
<Target><LocURI>dummy</LocURI></Target>
<Source><LocURI>dummy</LocURI></Source>
<Meta><Anchor xmlns="syncml:metinf">
<Last>29615689</Last>

<Next>29615689</Next>

</Anchor></Meta>

</Item>

26

</Alert>

<Final/>

</SyncBody>

</SyncML>

DEBUG - Initializing Winsock...

DEBUG - 3

DEBUG - Winsock initialized

DEBUG - Getting http://localhost:8080/syncdj/sync
DEBUG - Response message:

DEBUG - <SyncML>

<SyncHdr>

<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>

<Target>

<LocURI>sc-api-nat</LocURI>

</Target>

<Source>
<LocURI>http://localhost:8080</LocURI>
</Source>
<RespURI>http://192.168.0.34:8080/sync4j/sync?sid=WOJAYT1hMzJjLTEwWNzUzNjgxNTczMT</RespUR
I>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>
<TargetRef>http://localhost:8080</TargetRef>
<SourceRef>sc-api-nat</SourceRef>
<Data>212</Data>

</Status>

<Status>

<CmdID>2</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>1</CmdRef>
<Cmd>Alert</Cmd>
<TargetRef>dummy</TargetRef>
<SourceRef>dummy</SourceRef>
<Data>200</Data>

<Item>

<Data><Anchor xmlns='syncml:metinf'>
<Next>29615689</Next>
</Anchor>

</Data>

</Item>

</Status>

<Alert><CmdID>3</CmdID>
<Data>201</Data>

<Item>

<Target>
<LocURI>dummy</LocURI>
</Target>

<Source>
<LocURI>dummy</LocURI>
</Source>

<Meta><Anchor xmlns='syncml:metinf'>
<Last>1075368157493</Last>
<Next>1075368157493</Next>
</Anchor>

</Meta>

</Item>

</Alert>

<Final/>
</SyncBody>
</SyncML>

INFO - Starting sync...

27

DEBUG - Preparing slow sync for dummy

DEBUG - Synchronization message:

DEBUG - <SyncML><SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>

<MsgID>2</MsgID>
<Target><LocURI>http://localhost:8080
</LocURI></Target>
<Source><LocURI>sc-api-nat</LocURI></Source>
</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>
<TargetRef>http://localhost:8080</TargetRef>
<SourceRef>sc-api-nat</SourceRef>
<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>dummy</TargetRef>
<SourceRef>dummy</SourceRef>
<Data>200</Data>

<Item>

<Data>

<Anchor xmlns='syncml:metinf'><Next>29615689</Next></Anchor>
</Data>

</Item>

</Status>

<Sync><CmdID>3</CmdID>
<Target><LocURI>dummy</LocURI></Target>
<Source><LocURI>dummy</LocURI></Source>

<Replace>

<CmdID>4</CmdID>

<Meta><Type xmlns='syncml:metinf'>text/plain</Type></Meta>
<Item>
<Source><LocURI>iteml</LocURI></Source>
<Data>

This is item One</Data>

</Item>

<Item>
<Source><LocURI>item2</LocURI></Source>
<Data>

This is item Two</Data>

</Item>

<Item>
<Source><LocURI>item3</LocURI></Source>
<Data>

This is item Three</Data>

</Item>

<Item>
<Source><LocURI>item4</LocURI></Source>
<Data>

This is item Four</Data>

</Item>

</Replace>

</Sync><Final/>

</SyncBody>

</SyncML>

DEBUG - Getting http://192.168.0.34:8080/sync4j/sync?sid=WOJAYT1hMzJjLTEWNzUzNjgxNTczMT
DEBUG - Response message:

DEBUG - <SyncML>

<SyncHdr>

<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgIlD>2</MsgID>

<Target>

<LocURI>sc-api-nat</LocURI>

28

</Target>

<Source>
<LocURI>http://localhost:8080
</LocURI>

</Source>
<RespURI>http://192.168.0.34:8080/sync4j/sync?sid=WOJAYT1hMzJjLTEWNzUzNjgxNTczMT</RespUR
I>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>4</CmdID>
<MsgRef>2</MsgRef>
<CmdRef>0</CmdRef>
<Cmd>SyncHdr</Cmd>
<TargetRef>http://localhost:8080
</TargetRef>
<SourceRef>test</SourceRef>
<Data>200</Data>

</Status>

<Status>

<CmdID>1</CmdID>
<MsgRef>2</MsgRef>
<CmdRef>3</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>dummy</TargetRef>
<SourceRef>dummy</SourceRef>
<Data>200</Data>

</Status>

<Sync><CmdID>3</CmdID>
<Target>
<LocURI>dummy</LocURI>
</Target>

<Source>
<LocURI>dummy</LocURI>
</Source>
<Add><CmdID>2</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/plain</Type></Meta>
<Item>

<Source>

<LoCURI>1</LocURI>

</Source>

<Data>BEGIN:VCARD

VERSION:2.1

N:John;Doe; ;;

TITLE:Marketing Director
EMAIL;WORK; PREF; INTERNET: jhon_doe@somewhere.com
TEL; WORK; PREF:+1 650 50504040
END:VCARD</Data>

</Item>

</Add>

</Sync>

<Final/>
</SyncBody>
</SyncML>

INFO - New items

INFO - =========

INFO - key: 1, data: BEGIN:VCARD

VERSION:2.1

N:John;Doe; ; ;

TITLE:Marketing Director

EMAIL;WORK; PREF; INTERNET: jhon_doe@somewhere.com
TEL;WORK; PREF:+1 650 50504040

END:VCARD

INFO - Updated items
INFO - =============
INFO - Deleted items
INFO - =============
INFO - Mappings

INFO - ========

INFO - luid: C - 1, guid: 1

29

INFO - Ending sync...

DEBUG - Mapping message:

DEBUG - <SyncML>

<SyncHdr>

<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>

<MsgID>2</MsgID>
<Target><LocURI>http://localhost:8080</LocURI></Target>
<Source><LocURI>sc-api-nat</LocURI></Source>
</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>
<TargetRef>http://localhost:8080</TargetRef>
<SourceRef>test</SourceRef>

<Data>200</Data>

</Status><Map>

<CmdID>3</CmdID>
<Target><LocURI>dummy</LocURI></Target>
<Source><LocURI>dummy</LocURI></Source>
<MapItem>

<Target><LocURI>1</LocURI></Target
><Source><LocURI>C - 1</LocURI></Source>
</MapItem>

</Map>

<Final/>

</SyncBody>

</SyncML>

DEBUG - Getting http://192.168.0.34:8080/sync4j/sync?sid=WOJAYT1hMzJjLTEWNzUzNjgxNTczMT
DEBUG - Response message:

DEBUG - <SyncML>

<SyncHdr>

<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>sc-api-nat</LocURI>

</Target>

<Source>
<LocURI>http://localhost:8080</LocURI>
</Source>
<RespURI>http://192.168.0.34:8080/sync4j/sync?sid=WOJAYT1hMzJjLTEwWNzUzNjgxNTczMT</RespUR
I>

<NoResp/>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>
<TargetRef>http://localhost:8080</TargetRef>
<SourceRef>test</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>
<MsgRef>2</MsgRef>
<CmdRef>3</CmdRef>
<Cmd>Map</Cmd>
<TargetRef>dummy</TargetRef>
<SourceRef>dummy</SourceRef>
<Data>200</Data>

</Status>

<Final/>

</SyncBody>
</SyncML>

30

INFO - Finalyzing...
INFO - Sync ended.

31

6. Sync4j SyncClient API Licensing

The Sync4j SyncClient APl is released under the "GNU General Public License' (GPL'). This
means that the Sync4j SyncClient API can be used free of charge under the "GPL". If you do
not want to be bound by the "GPL' terms (such as the requirement that your application must
also be "GPL', you may purchase a commercial license for the same product from Funambol;
contact Funambol at sales@funambol.com .

Since Funambol owns the copyright to the Sync4j SyncClient API source code, we are able to
employ "Dual Licensing', which means that the same product is available under "GPL' and
under a commercial license. This does not in any way affect the *Open Source' commitment of
Funambol. For details about when a commercial license is required, please see the Copyrights
and Licensing section of this manual.

6.1. Copyrights and Licenses Used by Funambol
Funambol owns the copyright to the 'SyncClient API' source code.

All the source code in the SyncClient API is covered by the 'GNU General Public License'. The
text of this license can be found as the file 'COPYING' in the distribution.

The GNU General Public License (GPL) is probably the best known Open Source license. The
formal terms of the 'GPL' license can be found at http://www.fsf.org/licenses/. See also
http://www.fsf.org/licenses/gpl-faq.html and http://www.gnu.org/philosophy/enforcing-gpl.html.

Since the 'Sync4j SyncClient API' software is released under the 'GPL', it may often be used for
free, but for certain uses you may want or need to buy commercial licenses from 'Funambol'.
Contact Funambol at sales@funambol.com for more information.

6.2. Using the Sync4j SyncClient API Software Under a Commercial
License

The GPL license is contagious in the sense that when a program is linked to a 'GPL' program
all the source code for all the parts of the resulting product must also be released under the
'GPL". If you do not follow this 'GPL' requirement, you break the license terms and forfeit your
right to use the 'GPL' program altogether. You also risk damages.

You need a commercial license:

« When you link a program with any 'GPL' code from the 'Sync4j SyncClient API' software
and don't want the resulting product to be licensed under 'GPL', perhaps because you want
to build a commercial product or keep the added non-'GPL' code closed source for other
reasons.

When purchasing commercial licenses, you are not using the 'Sync4j SyncClient API'
software under 'GPL' even though it's the same code.

32

« When you distribute a non-'GPL' application that *only* works with the 'Sync4j SyncClient
API' software and ship it with the 'Sync4j SyncClient API' software. This type of solution is
considered to be linking even if it's done over a network.

« When you distribute copies of the 'Sync4j SyncClient API' software without providing the
source code as required under the 'GPL' license.

« When you want to support the further development of the 'Sync4j SyncClient API' even if
you don't formally need a commercial license.
Purchasing support directly from 'Funambol' is another good way of contributing to the
development of the 'Sync4j SyncClient API' software, with immediate advantages for you.

For commercial licenses, please contact Funambol at sales@funambol.com.

6.3. Using the Sync4j SyncClient API Software for Free Under GPL

You can use the 'Sync4j SyncClient API software' for free under the 'GPL' if you adhere
to the conditions of the 'GPL'. Common uses of the 'GPL' include:

« When you distribute both your own application and the 'Sync4j SyncClient API' source code
under the 'GPL' with your product.

« When you distribute the 'Sync4j SyncClient API' source code bundled with other programs
that are not linked to or dependent on the 'Sync4j SyncClient API' system for their
functionality even if you sell the distribution commercially.

This is called mere aggregation in the 'GPL' license.

« When you are not distributing *any* part of the 'Sync4j SyncClient API' system, you can use

it for free.

If your use of 'Sync4j SyncClient API' software does not require a commercial license, we
encourage you to purchase support from 'Funambol' anyway.

This way you contribute toward 'Sync4j SyncClient API' development and also gain
immediate advantages for yourself.

If you use the 'Sync4j SyncClient API' software in a commercial context such that you profit by
its use, we ask that you further the development of the 'Sync4j SyncClient API' software by
purchasing some level of support. We feel that if the 'Sync4j SyncClient API' helps your
business, it is reasonable to ask that you help 'Funambol'. (Otherwise, if you ask us support
questions, you are not only using for free something into which we've put a lot a

work, you're asking us to provide free support, too.)

33

